语句没有可优化的地方如果效率不行,就要考虑索引了建议索引:
co(cust_num,co_num)
coitem(co_num,due_date,stat)
custshipto(cust_num,cust_seq)
customer(cust_num)还要考虑表结构设计有没有不合理的地方

解决方案 »

  1.   


    转自邹老大的回复SELECT查询优化一般可以做的一些优化措施
    1.合理使用索引 
    索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下: 
    ●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。 
    ●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。 
    ●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。 
    ●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。 
    ●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。 2.避免或简化排序 
    应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素: 
    ●索引中不包括一个或几个待排序的列; 
    ●group by或order by子句中列的次序与索引的次序不一样; 
    ●排序的列来自不同的表。 
    为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。 3.消除对大型表行数据的顺序存取 
    在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。 
    还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作: 
    SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008 
    虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句: 
    SELECT * FROM orders WHERE customer_num=104 AND order_num>1001 
    UNION 
    SELECT * FROM orders WHERE order_num=1008 
    这样就能利用索引路径处理查询。 4.避免相关子查询 
    一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。 5.避免困难的正规表达式 
    MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _” 
    即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。 
    另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。6.使用临时表加速查询 
    把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如: 
    SELECT cust.name,rcvbles.balance,……other columns 
    FROM cust,rcvbles 
    WHERE cust.customer_id = rcvlbes.customer_id 
    AND rcvblls.balance>0 
    AND cust.postcode>“98000” 
    ORDER BY cust.name 
    如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序: 
    SELECT cust.name,rcvbles.balance,……other columns 
    FROM cust,rcvbles 
    WHERE cust.customer_id = rcvlbes.customer_id 
    AND rcvblls.balance>0 
    ORDER BY cust.name 
    INTO TEMP cust_with_balance 
    然后以下面的方式在临时表中查询: 
    SELECT * FROM cust_with_balance 
    WHERE postcode>“98000” 
    临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。 
    注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。 7.用排序来取代非顺序存取 
    非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。 
    有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
      
    3.优化 tempdb 性能
    对 tempdb 数据库的物理位置和数据库选项设置的一般建议包括: 
    使 tempdb 数据库得以按需自动扩展。这确保在执行完成前不终止查询,该查询所生成的存储在 tempdb 数据库内的中间结果集比预期大得多。将 tempdb 数据库文件的初始大小设置为合理的大小,以避免当需要更多空间时文件自动扩展。如果 tempdb 数据库扩展得过于频繁,性能会受不良影响。将文件增长增量百分比设置为合理的大小,以避免 tempdb 数据库文件按太小的值增长。如果文件增长幅度与写入 tempdb 数据库的数据量相比太小,则 tempdb 数据库可能需要始终扩展,因而将妨害性能。将 tempdb 数据库放在快速 I/O 子系统上以确保好的性能。在多个磁盘上条带化 tempdb 数据库以获得更好的性能。将 tempdb 数据库放在除用户数据库所使用的磁盘之外的磁盘上。有关更多信息,请参见扩充数据库。分区
    将数据库分区可提高其性能并易于维护。通过将一个大表拆分成更小的单个表,只访问一小部分数据的查询可以执行得更快,因为需要扫描的数据较少。而且可以更快地执行维护任务(如重建索引或备份表)。实现分区操作时可以不拆分表,而将表物理地放置在个别的磁盘驱动器上。例如,将表放在某个物理驱动器上并将相关的表放在与之分离的驱动器上可提高查询性能,因为当执行涉及表之间联接的查询时,多个磁头同时读取数据。可以使用 Microsoft® SQL Server™ 2000 文件组指定将表放置在哪些磁盘上。硬件分区
    硬件分区将数据库设计为利用可用的硬件构架。硬件分区的示例包括: 允许多线程执行的多处理器,使得可以同时执行许多查询。换句话说,在多处理器上可以同时执行查询的各个组件,因此使单个查询的速度更快。例如,查询内引用的每个表可同时由不同的线程扫描。
    RAID(独立磁盘冗余阵列)设备允许数据在多个磁盘驱动器中条带化,使更多的读/写磁头同时读取数据,因此可以更快地访问数据。在多个驱动器中条带化的表一般比存储在一个驱动器上的相同的表扫描速度要快。换句话说,将表与相关的表分开存储在不同的驱动器上可以显著提高联接那些表的查询的性能。 
    水平分区
    水平分区将一个表分段为多个表,每个表包含相同数目的列和较少的行。例如,可以将一个包含十亿行的表水平分区成 12 个表,每个小表代表特定年份内一个月的数据。任何需要特定月份数据的查询只引用相应月份的表。具体如何将表进行水平分区取决于如何分析数据。将表进行分区是为了使查询引用尽可能少的表。否则,查询时须使用过多的 UNION 查询来逻辑合并表,而这会削弱查询性能。有关查询水平分区的表的更多信息,请参见视图使用方案。 常用的方法是根据时期/使用对数据进行水平分区。例如,一个表可能包含最近五年的数据,但是只定期访问本年度的数据。在这种情况下,可考虑将数据分区成五个表,每个表只包含一年的数据。垂直分区
    垂直分区将一个表分段为多个表,每个表包含较少的列。垂直分区的两种类型是规范化和行拆分。规范化是个标准数据库进程,该进程从表中删除冗余列并将其放到次表中,次表按主键与外键的关系链接到主表。行拆分将原始表垂直分成多个只包含较少列的表。拆分的表内的每个逻辑行与其它表内的相同逻辑行匹配。例如,联接每个拆分的表内的第十行将重新创建原始行。与水平分区一样,垂直分区使查询得以扫描较少的数据,因此提高查询性能。例如有一个包含七列的表,通常只引用该表的前四列,那么将该表的后三列拆分到一个单独的表中可获得性能收益。应谨慎考虑垂直分区操作,因为分析多个分区内的数据需要有联接表的查询,而如果分区非常大将可能影响性能。
      
      

  2.   

    coitem.stat<>'F' and coitem.stat<>'I' and coitem.stat<>'H'
    改成coitem.sta not in('F','I','H')