募集关于索引优化的文字资料 谢谢大家

解决方案 »

  1.   

    如何加快查询速度?
    1、升级硬件  
    2、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。
    3、扩大服务器的内存
    4、增加服务器CPU个数
    5、对于大的数据库不要设置数据库自动增长,它会降低服务器的性能
    6、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。
    7、查询时不要返回不需要的行、列
    8、用select   top   100   /   10   Percent   来限制用户返回的行数或者SET   ROWCOUNT来限制操作的行
    9、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数
    10、一般在GROUP   BY   个HAVING字句之前就能剔除多余的行,所以尽量不要用它们来做剔除行的工作。他们的执行顺序应该如下最优:
          select的Where字句选择所有合适的行,Group   By用来分组个统计行,Having字句用来剔除多余的分组。这样Group   By   个Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。如果Group   BY的目的不包括计算,只是分组,那么用Distinct更快
    11、一次更新多条记录比分多次更新每次一条快,就是说批处理好MS   SQL   Server查询优化方法查询速度慢的原因很多,常见如下几种  1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)  
    2、I/O吞吐量小,形成了瓶颈效应。  
    3、没有创建计算列导致查询不优化。  
    4、内存不足  
    5、网络速度慢  
    6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)  
    7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)  
    8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。  
    9、返回了不必要的行和列  
    10、查询语句不好,没有优化  可以通过如下方法来优化查询  1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要.  
    2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)  
    3、升级硬件  
    4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段  
    5、提高网速;  
    6、扩大服务器的内存,Windows   2000和SQL   server   2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行   Microsoft   SQL   Server?   2000   时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的   1.5   倍。如果另外安装了全文检索功能,并打算运行   Microsoft   搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的   3   倍。将   SQL   Server   max   server   memory   服务器配置选项配置为物理内存的   1.5   倍(虚拟内存大小设置的一半)。  
    7、增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP   BY字句同时执行,SQL   SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作UPDATE,INSERT, DELETE还不能并行处理。  
    8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。   like   'a%'   使用索引   like   '%a'   不使用索引用   like   '%a%'   查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。  
    9、DB   Server   和APPLication   Server   分离;OLTP和OLAP分离  
    10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层   Web   站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')    a、在实现分区视图之前,必须先水平分区表  
    b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。  11、重建索引   DBCC   REINDEX   ,DBCC   INDEXDEFRAG,收缩数据和日志   DBCC   SHRINKDB,DBCC   SHRINKFILE.   设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。   在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:  1、   查询语句的词法、语法检查          
    2、   将语句提交给DBMS的查询优化器  
    3、   优化器做代数优化和存取路径的优化  
    4、   由预编译模块生成查询规划  
    5、   然后在合适的时间提交给系统处理执行  
    6、   最后将执行结果返回给用户其次,看一下SQL   SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。  12、Commit和rollback的区别   Rollback:回滚所有的事物。   Commit:提交当前的事物.   没有必要在动态SQL里写事物,如果要写请写在外面如:   begin   tran   exec(@s)   commit   trans   或者将动态SQL   写成函数或者存储过程。  13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。  14、SQL的注释申明对执行没有任何影响  15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类:   只进   必须按照从第一行到最后一行的顺序提取行。FETCH   NEXT   是唯一允许的提取操作,也是默认方式。可滚动性   可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。  有四个并发选项  READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。  OPTIMISTIC   WITH   valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。   选择这个并发选项OPTIMISTIC   WITH   ROW   VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。  
    在   SQL   Server   中,这个性能由   timestamp   数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有   timestamp   列的行时,SQL   Server   先在时间戳列中存储当前的   @@DBTS   值,然后增加   @@DBTS   的值。如果某   个表具有   timestamp   列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较   timestamp   列即可。如果应用程序对没有   timestamp   列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。  
    SCROLL   LOCKS   这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。  
    然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的   SELECT   语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚操作之后。如果提交时关闭游标的选项为关,则   COMMIT   语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标   SELECT   语句中的锁提示。  
    锁提示   只读   乐观数值   乐观行版本控制   锁定无提示   未锁定   未锁定   未锁定   更新   NOLOCK   未锁定   未锁定   未锁定   未锁定   HOLDLOCK   共享   共享   共享   更新   UPDLOCK   错误   更新   更新   更新   TABLOCKX   错误   未锁定   未锁定   更新其它   未锁定   未锁定   未锁定   更新   *指定   NOLOCK   提示将使指定了该提示的表在游标内是只读的。  16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在;用索引优化器优化索引  17、注意UNion和UNion   all   的区别。UNION   all好  18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的  19、查询时不要返回不需要的行、列  20、用sp_configure   'query   governor   cost   limit'或者SET   QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET   LOCKTIME设置锁的时间  21、用select   top   100   /   10   Percent   来限制用户返回的行数或者SET   ROWCOUNT来限制操作的行  22、在SQL2000以前,一般不要用如下的字句:   "IS   NULL",   " <> ",   "!=",   "!> ",   "! <",   "NOT",   "NOT   EXISTS",   "NOT   IN",   "NOT   LIKE",   and   "LIKE   '%500'",因为他们不走索引全是表扫描。也不要在WHere字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代.还可以变通写法:WHERE   SUBSTRING(firstname,1,1)   =   'm'改为WHERE   firstname   like   'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT   IN会多次扫描表,使用EXISTS、NOT   EXISTS   ,IN   ,   LEFT   OUTER   JOIN   来替
      

  2.   

    代,特别是左连接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS   NULL,“NOT",   "NOT   EXISTS",   "NOT   IN"能优化她,而” <> ”等还是不能优化,用不到索引。  23、使用Query   Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。  24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引:   SELECT   *   FROM   PersonMember   (INDEX   =   IX_Title)   WHERE   processid   IN   (‘男’,‘女’)    25、将需要查询的结果预先计算好放在表中,查询的时候再SELECT。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。  26、MIN()   和   MAX()能使用到合适的索引  27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers,   Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不仅维护工作小,编写程序质量高,并且执行的速度快。  28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作:   方法:Create   procedure   p_insert   as   insert   into   table(Fimage)   values   (@image),   在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。      29、Between在某些时候比IN速度更快,Between能够更快地根据索引找到范围。用查询优化器可见到差别。   select   *   from   chineseresume   where   title   in   ('男','女')   Select   *   from   chineseresume   where   between   '男'   and   '女'   是一样的。由于in会在比较多次,所以有时会慢些。    30、在必要是对全局或者局部临时表创建索引,有时能够提高速度,但不是一定会这样,因为索引也耗费大量的资源。他的创建同是实际表一样。  31、不要建没有作用的事物例如产生报表时,浪费资源。只有在必要使用事物时使用它。  32、用OR的字句可以分解成多个查询,并且通过UNION   连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION   all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。  33、尽量少用视图,它的效率低。对视图操作比直接对表操作慢,可以用stored   procedure来代替她。特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰.为了加快视图的查询,MsSQL增加了视图索引的功能。  34、没有必要时不要用DISTINCT和ORDER   BY,这些动作可以改在客户端执行。它们增加了额外的开销。这同UNION   和UNION   ALL一样的道理。   SELECT   top   20   ad.companyname,comid,position,ad.referenceid,worklocation,   convert(varchar(10),ad.postDate,120)   as   postDate1,workyear,degreedescription   FROM   jobcn_query.dbo.COMPANYAD_query   ad   where   referenceID   in('JCNAD00329667','JCNAD132168','JCNAD00337748','JCNAD00338345','JCNAD00333138','JCNAD00303570',   'JCNAD00303569','JCNAD00303568','JCNAD00306698','JCNAD00231935','JCNAD00231933','JCNAD00254567',   'JCNAD00254585','JCNAD00254608','JCNAD00254607','JCNAD00258524','JCNAD00332133','JCNAD00268618',   'JCNAD00279196','JCNAD00268613')   order   by   postdate   desc  35、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数  36、当用SELECT   INTO时,它会锁住系统表(sysobjects,sysindexes等等),阻塞其他的连接的存取。创建临时表时用显示申明语句,而不是 select   INTO.   drop   table   t_lxh   begin   tran   select   *   into   t_lxh   from   chineseresume   where   name   =   'XYZ'   --commit   在另一个连接中SELECT   *   from   sysobjects可以看到   SELECT   INTO   会锁住系统表,Create   table   也会锁系统表(不管是临时表还是系统表)。所以千万不要在事物内使用它!!!这样的话如果是经常要用的临时表请使用实表,或者临时表变量。  37、一般在GROUP   BY   个HAVING字句之前就能剔除多余的行,所以尽量不要用它们来做剔除行的工作。他们的执行顺序应该如下最优:select   的Where字句选择所有合适的行,Group   By用来分组个统计行,Having字句用来剔除多余的分组。这样Group   By   个Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。如果Group   BY的目的不包括计算,只是分组,那么用Distinct更快  38、一次更新多条记录比分多次更新每次一条快,就是说批处理好  39、少用临时表,尽量用结果集和Table类性的变量来代替它,Table   类型的变量比临时表好  40、在SQL2000下,计算字段是可以索引的,需要满足的条件如下:    a、计算字段的表达是确定的  
      b、不能用在TEXT,Ntext,Image数据类型  
    c、必须配制如下选项   ANSI_NULLS   =   ON,   ANSI_PADDINGS   =   ON,   …….  41、尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。存储过程是编译好、优化过、并且被组织到一个执行规划里、且存储在数据库中的 SQL语句,是控制流语言的集合,速度当然快。反复执行的动态SQL,可以使用临时存储过程,该过程(临时表)被放在Tempdb中。以前由于SQL   SERVER对复杂的数学计算不支持,所以不得不将这个工作放在其他的层上而增加网络的开销。SQL2000支持UDFs,现在支持复杂的数学计算,函数的返回值不要太大,这样的开销很大。用户自定义函数象光标一样执行的消耗大量的资源,如果返回大的结果采用存储过程  42、不要在一句话里再三的使用相同的函数,浪费资源,将结果放在变量里再调用更快  43、SELECT   COUNT(*)的效率教低,尽量变通他的写法,而EXISTS快.同时请注意区别:   select   count(Field   of   null)   from   Table   和   select   count(Field   of   NOT   null)   from   Table   的返回值是不同的。  44、当服务器的内存够多时,配制线程数量   =   最大连接数+5,这样能发挥最大的效率;否则使用   配制线程数量 <最大连接数启用SQL   SERVER的线程池来解决,如果还是数量   =   最大连接数+5,严重的损害服务器的性能。  45、按照一定的次序来访问你的表。如果你先锁住表A,再锁住表B,那么在所有的存储过程中都要按照这个顺序来锁定它们。如果你(不经意的)某个存储过程中先锁定表B,再锁定表A,这可能就会导致一个死锁。如果锁定顺序没有被预先详细的设计好,死锁很难被发现  46、通过SQL   Server   Performance   Monitor监视相应硬件的负载   Memory:   Page   Faults   /   sec计数器如果该值偶尔走高,表明当时有线程竞争内存。如果持续很高,则内存可能是瓶颈。   Process:  1、%   DPC   Time   指在范例间隔期间处理器用在缓延程序调用(DPC)接收和提供服务的百分比。(DPC   正在运行的为比标准间隔优先权低的间隔)。   由于   DPC   是以特权模式执行的,DPC   时间的百分比为特权时间   百分比的一部分。这些时间单独计算并且不属于间隔计算总数的一部   分。这个总数显示了作为实例时间百分比的平均忙时。  
    2、%Processor   Time计数器 如果该参数值持续超过95%,表明瓶颈是CPU。可以考虑增加一个处理器或换一个更快的处理器。  
    3、%   Privileged   Time   指非闲置处理器时间用于特权模式的百分比。(特权模式是为操作系统组件和操纵硬件驱动程序而设计的一种处理模式。它允许直接访问硬件和所有内存。另一种模式为用户模式,它是一种为应用程序、环境分系统和整数分系统设计的一种有限处理模式。操作系统将应用程序线程转换成特权模式以访问操作系统服务)。   特权时间的   %   包括为间断和   DPC   提供服务的时间。特权时间比率高可能是由于失败设备产生的大数量的间隔而引起的。这个计数器将平均忙时作为样本时间的一部分显示。  
    4、%   User   Time表示耗费CPU的数据库操作,如排序,执行aggregate   functions等。如果该值很高,可考虑增加索引,尽量使用简单的表联接,水平分割大表格等方法来降低该值。   Physical   Disk:   Curretn   Disk   Queue   Length计数器该值应不超过磁盘数的1.5~2倍。要提高性能,可增加磁盘。   SQLServer:Cache   Hit   Ratio计数器该值越高越好。如果持续低于80%,应考虑增加内存。   注意该参数值是从SQL   Server启动后,就一直累加记数,所以运行经过一段时间后,该值将不能反映系统当前值。  
    47、分析select   emp_name   form   employee   where   salary   >   3000   在此语句中若salary是Float类型的,则优化器对其进行优化为Convert(float,3000),因为3000是个整数,我们应在编程时使用3000.0而不要等运行时让DBMS进行转化。同样字符和整型数据的转换。
      

  3.   

    如何提高查詢速度?
    1、不要使用游标
    2、规范化你的数据表
    3、不要使用SELECT *
    4、了解你将要对数据进行的操作
    5、不要给“性别”列创建索引
    6、使用事务
    7、小心死锁
    8、不要打开大的数据集
    9、不要使用服务器端游标
    10、使用参数查询
    11、在程序编码时使用大数据量的数据库
    12、不要使用INSERT导入大批的数据
    13、注意超时问题
    14、不要忽略同时修改同一记录的问题
    15、在细节表中插入纪录时,不要在主表执行SELECT MAX(ID)
    16、避免将列设为NULLable
    17、尽量不要使用TEXT数据类型
    18、尽量不要使用临时表
    19、学会分析查询
    20、使用参照完整性参数
    UNIQUE为表或视图创建唯一索引(不允许存在索引值相同的两行)。视图上的聚集索引必须是 UNIQUE 索引。在创建索引时,如果数据已存在,Microsoft&reg; SQL Server&#8482; 会检查是否有重复值,并在每次使用 INSERT 或 UPDATE 语句添加数据时进行这种检查。如果存在重复的键值,将取消 CREATE INDEX 语句,并返回错误信息,给出第一个重复值。当创建 UNIQUE 索引时,有多个 NULL 值被看作副本。如果存在唯一索引,那么会产生重复键值的 UPDATE 或 INSERT 语句将回滚,SQL Server 将显示错误信息。即使 UPDATE 或 INSERT 语句更改了许多行但只产生了一个重复值,也会出现这种情况。如果在有唯一索引并且指定了 IGNORE_DUP_KEY 子句情况下输入数据,则只有违反 UNIQUE 索引的行才会失败。在处理 UPDATE 语句时,IGNORE_DUP_KEY 不起作用。SQL Server 不允许为已经包含重复值的列创建唯一索引,无论是否设置了 IGNORE_DUP_KEY。如果尝试这样做,SQL Server 会显示错误信息;重复值必须先删除,才能为这些列创建唯一索引。CLUSTERED创建一个对象,其中行的物理排序与索引排序相同,并且聚集索引的最低一级(叶级)包含实际的数据行。一个表或视图只允许同时有一个聚集索引。具有聚集索引的视图称为索引视图。必须先为视图创建唯一聚集索引,然后才能为该视图定义其它索引。在创建任何非聚集索引之前创建聚集索引。创建聚集索引时重建表上现有的非聚集索引。如果没有指定 CLUSTERED,则创建非聚集索引。
    判断一个表的数据不在另一个表中最优秀方法?
    select a.* from tbl1 a 
    left join tbl2 b
    on a.key = b.key
    where b.key is null
      

  4.   

    关于SQL Server中索引使用及维护简介
    在应用系统中,尤其在联机事务处理系统中,对数据查询及处理速度已成为衡量应用系统成败的标准。而采用索引来加快数据处理速度也成为广大数据库用户所接受的优化方法。在良好的数据库设计基础上,能有效地使用索引是SQL Server取得高性能的基础,SQL Server采用基于代价的优化模型,它对每一个提交的有关表的查询,决定是否使用索引或用哪一个索引。因为查询执行的大部分开销是磁盘I/O,使用索引提高性能的一个主要目标是避免全表扫描,因为全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则查询只需读几次磁盘就可以了。所以如果建立了合理的索引,优化器就能利用索引加速数据的查询过程。但是,索引并不总是提高系统的性能,在增、删、改操作中索引的存在会增加一定的工作量,因此,在适当的地方增加适当的索引并从不合理的地方删除次优的索引,将有助于优化那些性能较差的SQL Server应用。实践表明,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。本文就SQL Server索引的性能问题进行了一些分析和实践。一、聚簇索引(clustered indexes)的使用聚簇索引是一种对磁盘上实际数据重新组织以按指定的一个或多个列的值排序。由于聚簇索引的索引页面指针指向数据页面,所以使用聚簇索引查找数据几乎总是比使用非聚簇索引快。每张表只能建一个聚簇索引,并且建聚簇索引需要至少相当该表120%的附加空间,以存放该表的副本和索引中间页。建立聚簇索引的思想是:1、大多数表都应该有聚簇索引或使用分区来降低对表尾页的竞争,在一个高事务的环境中,对最后一页的封锁严重影响系统的吞吐量。2、在聚簇索引下,数据在物理上按顺序排在数据页上,重复值也排在一起,因而在那些包含范围检查(between、<、<=、>、>=)或使用group by或order by的查询时,一旦找到具有范围中第一个键值的行,具有后续索引值的行保证物理上毗连在一起而不必进一步搜索,避免了大范围扫描,可以大大提高查询速度。3、在一个频繁发生插入操作的表上建立聚簇索引时,不要建在具有单调上升值的列(如IDENTITY)上,否则会经常引起封锁冲突。4、在聚簇索引中不要包含经常修改的列,因为码值修改后,数据行必须移动到新的位置。5、选择聚簇索引应基于where子句和连接操作的类型。聚簇索引的侯选列是:1、主键列,该列在where子句中使用并且插入是随机的。2、按范围存取的列,如pri_order > 100 and pri_order < 200。3、在group by或order by中使用的列。4、不经常修改的列。5、在连接操作中使用的列。二、非聚簇索引(nonclustered indexes)的使用SQL Server缺省情况下建立的索引是非聚簇索引,由于非聚簇索引不重新组织表中的数据,而是对每一行存储索引列值并用一个指针指向数据所在的页面。换句话说非聚簇索引具有在索引结构和数据本身之间的一个额外级。一个表如果没有聚簇索引时,可有250个非聚簇索引。每个非聚簇索引提供访问数据的不同排序顺序。在建立非聚簇索引时,要权衡索引对查询速度的加快与降低修改速度之间的利弊。另外,还要考虑这些问题:1、索引需要使用多少空间。2、合适的列是否稳定。3、索引键是如何选择的,扫描效果是否更佳。4、是否有许多重复值。对更新频繁的表来说,表上的非聚簇索引比聚簇索引和根本没有索引需要更多的额外开销。对移到新页的每一行而言,指向该数据的每个非聚簇索引的页级行也必须更新,有时可能还需要索引页的分理。从一个页面删除数据的进程也会有类似的开销,另外,删除进程还必须把数据移到页面上部,以保证数据的连续性。所以,建立非聚簇索引要非常慎重。非聚簇索引常被用在以下情况:1、某列常用于集合函数(如Sum,....)。2、某列常用于join,order by,group by。3、查寻出的数据不超过表中数据量的20%。三、覆盖索引(covering indexes)的使用覆盖索引是指那些索引项中包含查寻所需要的全部信息的非聚簇索引,这种索引之所以比较快也正是因为索引页中包含了查寻所必须的数据,不需去访问数据页。如果非聚簇索引中包含结果数据,那么它的查询速度将快于聚簇索引。但是由于覆盖索引的索引项比较多,要占用比较大的空间。而且update操作会引起索引值改变。所以如果潜在的覆盖查询并不常用或不太关键,则覆盖索引的增加反而会降低性能。四、索引的选择技术p_detail是住房公积金管理系统中记录个人明细的表,有890000行,观察在不同索引下的查询运行效果,测试在C/S环境下进行,客户机是IBM PII350(内存64M),服务器是DEC Alpha1000A(内存128M),数据库为SYBASE11.0.3。1、select count(*) from p_detail where op_date>’19990101’ and op_date<’19991231’ and pri_surplus1>3002、select count(*),sum(pri_surplus1) from p_detail where op_date>’19990101’ and pay_month between‘199908’ and’199912’不建任何索引查询1 1分15秒查询2 1分7秒在op_date上建非聚簇索引查询1 57秒查询2 57秒在op_date上建聚簇索引查询1 <1秒查询2 52秒在pay_month、op_date、pri_surplus1上建索引查询1 34秒查询2 <1秒在op_date、pay_month、pri_surplus1上建索引查询1 <1秒查询2 <1秒 
    从以上查询效果分析,索引的有无,建立方式的不同将会导致不同的查询效果,选择什么样的索引基于用户对数据的查询条件,这些条件体现于where从句和join表达式中。一般来说建立索引的思路是:(1)主键时常作为where子句的条件,应在表的主键列上建立聚簇索引,尤其当经常用它作为连接的时候。(2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚簇索引。(3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。(4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。(5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。(6)在选择索引键时,设法选择那些采用小数据类型的列作为键以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。五、索引的维护上面讲到,某些不合适的索引影响到SQL Server的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。索引的维护包括:1、重建索引随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大块I/O的时候,重建非聚簇索引可以降低分片,维护大块I/O的效率。重建索引实际上是重新组织B-树空间。在下面情况下需要重建索引:(1)数据和使用模式大幅度变化。(2)排序的顺序发生改变。(3)要进行大量插入操作或已经完成。(4)使用大块I/O的查询的磁盘读次数比预料的要多。(5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算。(6)dbcc检查出索引有问题。当重建聚簇索引时,这张表的所有非聚簇索引将被重建。2、索引统计信息的更新当在一个包含数据的表上创建索引的时候,SQL Server会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。优化器利用这个页来判断该索引对某个特定查询是否有用。但这个统计信息并不动态地重新计算。这意味着,当表的数据改变之后,统计信息有可能是过时的,从而影响优化器追求最有工作的目标。因此,在下面情况下应该运行update statistics命令:(1)数据行的插入和删除修改了数据的分布。(2)对用truncate table删除数据的表上增加数据行。(3)修改索引列的值。六、结束语实践表明,不恰当的索引不但于事无补,反而会降低系统的执行性能。因为大量的索引在插入、修改和删除操作时比没有索引花费更多的系统时间。例如下面情况下建立的索引是不恰当的:1、在查询中很少或从不引用的列不会受益于索引,因为索引很少或从来不必搜索基于这些列的行。2、只有两个或三个值的列,如男性和女性(是或否),从不会从索引中得到好处。另外,鉴于索引加快了查询速度,但减慢了数据更新速度的特点。可通过在一个段上建表,而在另一个段上建其非聚簇索引,而这两段分别在单独的物理设备上来改善操作性能。
      

  5.   

    优化SQL Server索引SQL Server中有几个可以让你检测、调整和优化SQL Server性能的工具。在本文中,将说明如何用SQL Server的工具来优化数据库索引的使用,本文还涉及到有关索引的一般性知识。关于索引的常识 影响到数据库性能的最大因素就是索引。由于该问题的复杂性,我只可能简单的谈谈这个问题,不过关于这方面的问题,目前有好几本不错的书籍可供你参阅。我在这里只讨论两种SQL Server索引,即clustered索引和nonclustered索引。当考察建立什么类型的索引时,你应当考虑数据类型和保存这些数据的column。同样,你也必须考虑数据库可能用到的查询类型以及使用的最为频繁的查询类型。索引的类型如果column保存了高度相关的数据,并且常常被顺序访问时,最好使用clustered索引,这是因为如果使用clustered索引,SQL Server会在物理上按升序(默认)或者降序重排数据列,这样就可以迅速的找到被查询的数据。同样,在搜寻控制在一定范围内的情况下,对这些column也最好使用clustered索引。这是因为由于物理上重排数据,每个表格上只有一个clustered索引。与上面情况相反,如果columns包含的数据相关性较差,你可以使用nonculstered索引。你可以在一个表格中使用高达249个nonclustered索引——尽管我想象不出实际应用场合会用的上这么多索引。当表格使用主关键字(primary keys),默认情况下SQL Server会自动对包含该关键字的column(s)建立一个独有的cluster索引。很显然,对这些column(s)建立独有索引意味着主关键字的唯一性。当建立外关键字(foreign key)关系时,如果你打算频繁使用它,那么在外关键字cloumn上建立nonclustered索引不失为一个好的方法。如果表格有clustered索引,那么它用一个链表来维护数据页之间的关系。相反,如果表格没有clustered索引,SQL Server将在一个堆栈中保存数据页。数据页当索引建立起来的时候,SQLServer就建立数据页(datapage),数据页是用以加速搜索的指针。当索引建立起来的时候,其对应的填充因子也即被设置。设置填充因子的目的是为了指示该索引中数据页的百分比。随着时间的推移,数据库的更新会消耗掉已有的空闲空间,这就会导致页被拆分。页拆分的后果是降低了索引的性能,因而使用该索引的查询会导致数据存储的支离破碎。当建立一个索引时,该索引的填充因子即被设置好了,因此填充因子不能动态维护。为了更新数据页中的填充因子,我们可以停止旧有索引并重建索引,并重新设置填充因子(注意:这将影响到当前数据库的运行,在重要场合请谨慎使用)。DBCC INDEXDEFRAG和DBCC DBREINDEX是清除clustered和nonculstered索引碎片的两个命令。INDEXDEFRAG是一种在线操作(也就是说,它不会阻塞其它表格动作,如查询),而DBREINDEX则在物理上重建索引。在绝大多数情况下,重建索引可以更好的消除碎片,但是这个优点是以阻塞当前发生在该索引所在表格上其它动作为代价换取来得。当出现较大的碎片索引时,INDEXDEFRAG会花上一段比较长的时间,这是因为该命令的运行是基于小的交互块(transactional block)。填充因子当你执行上述措施中的任何一个,数据库引擎可以更有效的返回编入索引的数据。关于填充因子(fillfactor)话题已经超出了本文的范畴,不过我还是提醒你需要注意那些打算使用填充因子建立索引的表格。在执行查询时,SQL Server动态选择使用哪个索引。为此,SQL Server根据每个索引上分布在该关键字上的统计量来决定使用哪个索引。值得注意的是,经过日常的数据库活动(如插入、删除和更新表格),SQL Server用到的这些统计量可能已经“过期”了,需要更新。你可以通过执行DBCC SHOWCONTIG来查看统计量的状态。当你认为统计量已经“过期”时,你可以执行该表格的UPDATE STATISTICS命令,这样SQL Server就刷新了关于该索引的信息了。建立数据库维护计划SQL Server提供了一种简化并自动维护数据库的工具。这个称之为数据库维护计划向导(Database Maintenance Plan Wizard ,DMPW)的工具也包括了对索引的优化。如果你运行这个向导,你会看到关于数据库中关于索引的统计量,这些统计量作为日志工作并定时更新,这样就减轻了手工重建索引所带来的工作量。如果你不想自动定期刷新索引统计量,你还可以在DMPW中选择重新组织数据和数据页,这将停止旧有索引并按特定的填充因子重建索引。 
      

  6.   

    不合理的索引设计
    ----例:表record有620000行,试看在不同的索引下,下面几个 SQL的运行情况:
    ---- 1.在date上建有一非个群集索引
    select count(*) from record where date >
    '19991201' and date < '19991214'and amount >
    2000 (25秒)
    select date,sum(amount) from record group by date
    (55秒)
    select count(*) from record where date >
    '19990901' and place in ('BJ','SH') (27秒)
    ---- 分析:
    ----date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在
    范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。
    ---- 2.在date上的一个群集索引
    select count(*) from record where date >
    '19991201' and date < '19991214' and amount >
    2000 (14秒)
    select date,sum(amount) from record group by date
    (28秒)
    select count(*) from record where date >
    '19990901' and place in ('BJ','SH')(14秒)
    ---- 分析:
    ---- 在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范
    围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范
    围扫描,提高了查询速度。
    ---- 3.在place,date,amount上的组合索引
    select count(*) from record where date >
    '19991201' and date < '19991214' and amount >
    2000 (26秒)
    select date,sum(amount) from record group by date
    (27秒)
    select count(*) from record where date >
    '19990901' and place in ('BJ, 'SH')(< 1秒)
    ---- 分析:
    ---- 这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引
    用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组
    合索引中,形成了索引覆盖,所以它的速度是非常快的。
    ---- 4.在date,place,amount上的组合索引
    select count(*) from record where date >
    '19991201' and date < '19991214' and amount >
    2000(< 1秒)
    select date,sum(amount) from record group by date
    (11秒)
    select count(*) from record where date >
    '19990901' and place in ('BJ','SH')(< 1秒)
    ---- 分析:
    ---- 这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并
    且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。
    ---- 5.总结:
    ---- 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要
    建立在对各种查询的分析和预测上。一般来说:
    ---- ①.有大量重复值、且经常有范围查询
    (between, >,< ,>=,< =)和order by
    、group by发生的列,可考虑建立群集索引;
    ---- ②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;
    ---- ③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。
      

  7.   

    索引的基本原理,以及数据是如何被访问的 (一)SQLS如何访问没有建立索引的数据表 
      Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”。可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找。运气好的话,在第一个书架的第一本书就  找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 
      SQLS在接到查询请求时,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链,也就是所有数据页集合。 
      这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 
      可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS如何访问建立了非聚集索引的数据表 
      如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行,每一个RID由文件ID、页编号和在页中行的编号组成。 
      当INDID的值在2至250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 
      例如:假定在Lastname上建立了非聚集索引,则执行Select * From Member Where Lastname=’Ota’时,查询过程是: 
      ①SQLS查询INDID值为2; 
      ②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页; 
      ③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名  为Ota的记录位于堆的第706页的第4行,N表示文件的ID值,与数据无关; 
      ④根据上述信息,SQLS立刻在堆的第706页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 
      在谈到索引基本概念的时候,我们就提到了这种方式:图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等,但有两点不同之处: 
      ① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”; 
      ② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 
      显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS如何访问建立聚集索引的数据表 
      在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 
    查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 
      这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 
      假定在Lastname字段上建立了聚集索引,则执行Select * From Member Where Lastname=’Ota’时,查询过程是: 
      ①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志; 
      ②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页; 
      ③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身; 
      ④将该记录返回客户端。 
      这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页。 
      难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS如何访问既有聚集索引、又有非聚集索引的数据表 
      如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索。就像在图书馆中,前台卡片柜中可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 
      也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 
    假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select * From Member Where Firstname=’Mike’时,查询过程是: 
      ①SQLS查询INDID值为2; 
      ②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目; 
      ③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针; 
      ④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身; 
      ⑤将该记录返回客户端。 
      这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的键值加以维护,而不必考虑非聚集索引。只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对避免了维护索引所导致的大量的额外资源消耗。 索引的优点和不足 
      索引有一些先天不足 
      1、系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引; 
      2、更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性。 
      当然建立索引的优点也是显而易见的,在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 
      实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引要花费更多的系统时间。 
      在如下字段建立索引应该是不恰当的: 
      1、很少或从不引用的字段; 
      2、逻辑型的字段,如男或女(是或否)等。 
      综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡。有得必有失,此消则彼长,这是考验一个DBA是否优秀的很重要的指标 建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下从六个方面来回答这些问题。  一.页分裂  微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分):  1.有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定;  2.只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置;  3.如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。  无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,不得不停止SQLS的运行并重建索引。  二.填充因子  然而在“混沌之初”,就可以在一定程度上避免不愉快出现,在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满,只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。  填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。  反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍。所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。  三.两道数学题  假定数据库设计没有问题,那么是否像上篇分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的。 
    实际上,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引。  
    这是怎么回事呢?  让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。  然而有时用索引比不用索引还快。  同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。  SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息。  四.统计信息  打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么?  从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。  在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。  随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。   
      

  8.   

    --接上.五.索引的人工维护  上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。  随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有:  1.数据和使用模式大幅度变化;  2.排序的顺序发生改变;  3.要进行大量插入操作或已经完成;  4.使用I/O查询的磁盘读次数比预料的要多;  5.由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算;  6.dbcc检查出索引有问题。 六.索引的使用原则  接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----惟一性索引和复合性索引。  惟一性索引保证在索引列中的全部数据是惟一的,不会包含冗余数据。如果表中已经有一个主键约束或者惟一性约束,那么当创建表或者修改表时,SQLS自动创建一个惟一性索引。但出于必须保证惟一性,那么应该创建主键约束或者惟一性键约束,而不是创建一个惟一性索引。  复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最惟一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列。  综上所述,我们总结了如下索引使用原则:  1.逻辑主键使用惟一的成组索引,对系统键(作为存储过程)采用惟一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写;  2.不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间;  3.不要索引常用的小型表;  4.一般不要为小型数据表设置过多的索引,如果经常有插入和删除操作就更不要设置索引,因为SQLS对插入和删除操作提供的索引维护可能比扫描表空间消耗的时间更多。  查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。  SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就像盐,少则无味多则咸。------------------------------------------------------------------------DBCC DBREINDEX重建索引提高SQL Server性能 大多数SQL Server表需要索引来提高数据的访问速度,如果没有索引,SQL Server 要进行表格扫描读取表中的每一个记录才能找到索要的数据。索引可以分为簇索引和非簇索引,簇索引通过重排表中的数据来提高数据的访问速度,而非簇索引则通过维护表中的数据指针来提高数据的索引。 1. 索引的体系结构 为什么要不断的维护表的索引?首先,简单介绍一下索引的体系结构。SQL Server在硬盘中用8KB页面在数据库文件内存放数据。缺省情况下这些页面及其包含的数据是无组织的。为了使混乱变为有序,就要生成索引。生成索引后,就有了索引页和数据页,数据页保存用户写入的数据信息。索引页存放用于检索列的数据值清单(关键字)和索引表中该值所在纪录的地址指针。索引分为簇索引和非簇索引,簇索引实质上是将表中的数据排序,就好像是字典的索引目录。非簇索引不对数据排序,它只保存了数据的指针地址。向一个带簇索引的表中插入数据,当数据页达到100%时,由于页面没有空间插入新的的纪录,这时就会发生分页,SQL Server 将大约一半的数据从满页中移到空页中,从而生成两个半的满页。这样就有大量的数据空间。簇索引是双向链表,在每一页的头部保存了前一页、后一页地址以及分页后数据移动的地址,由于新页可能在数据库文件中的任何地方,因此页面的链接不一定指向磁盘的下一个物理页,链接可能指向了另一个区域,这就形成了分块,从而减慢了系统的速度。对于带簇索引和非簇索引的表来说,非簇索引的关键字是指向簇索引的,而不是指向数据页的本身。 为了克服数据分块带来的负面影响,需要重构表的索引,这是非常费时的,因此只能在需要时进行。可以通过DBCC SHOWCONTIG来确定是否需要重构表的索引。   2. DBCC SHOWCONTIG用法 下面举例来说明DBCC SHOWCONTIG和DBCC REDBINDEX的使用方法。以应用程序中的Employee数据表作为例子,在 SQL Server的Query analyzer输入命令: use database_name declare @table_id int set @table_id=object_id('Employee') dbcc showcontig(@table_id) 输出结果: DBCC SHOWCONTIG scanning 'Employee' table... Table: 'Employee' (1195151303); index ID: 1, database ID: 53 TABLE level scan performed. - Pages Scanned................................: 179 - Extents Scanned..............................: 24 - Extent Switches..............................: 24 - Avg. Pages per Extent........................: 7.5 - Scan Density [Best Count:Actual Count].......: 92.00% [23:25] - Logical Scan Fragmentation ..................: 0.56% - Extent Scan Fragmentation ...................: 12.50% - Avg. Bytes Free per Page.....................: 552.3 - Avg. Page Density (full).....................: 93.18% DBCC execution completed. If DBCC printed error messages, contact your system administrator. 通过分析这些结果可以知道该表的索引是否需要重构。如下描述了每一行的意义: 信息                                           描述 Pages Scanned                    表或索引中的长页数 Extents Scanned                 表或索引中的长区页数 Extent Switches                  DBCC遍历页时从一个区域到另一个区域的次数 Avg. Pages per Extent         相关区域中的页数 Scan Density[Best Count:Actual Count]         Best Count是连续链接时的理想区域改变数,Actual Count是实际区域改变数,Scan Density为100%表示没有分块。 Logical Scan Fragmentation   扫描索引页中失序页的百分比 Extent Scan Fragmentation    不实际相邻和包含链路中所有链接页的区域数 Avg. Bytes Free per Page       扫描页面中平均自由字节数 Avg. Page Density (full)         平均页密度,表示页有多满  从上面命令的执行结果可以看的出来,Best count为23 而Actual Count为25这表明orders表有分块需要重构表索引。下面通过DBCC DBREINDEX来重构表的簇索引。 3. DBCC DBREINDEX 用法 重建指定数据库中表的一个或多个索引。 语法 DBCC DBREINDEX     (    [ 'database.owner.table_name'                 [ , index_name                 [ , fillfactor ]             ]          ]      )      参数 'database.owner.table_name' 是要重建其指定的索引的表名。数据库、所有者和表名必须符合标识符的规则。有关更多信息,请参见使用标识符。如果提供 database 或 owner 部分,则必须使用单引号 (') 将整个 database.owner.table_name 括起来。如果只指定 table_name,则不需要单引号。 index_name 是要重建的索引名。索引名必须符合标识符的规则。如果未指定 index_name 或指定为 ' ',就要对表的所有索引进行重建。 fillfactor 是创建索引时每个索引页上要用于存储数据的空间百分比。fillfactor 替换起始填充因子以作为索引或任何其它重建的非聚集索引(因为已重建聚集索引)的新默认值。如果 fillfactor 为 0,DBCC DBREINDEX 在创建索引时将使用指定的起始 fillfactor。 同样在Query Analyzer中输入命令: dbcc dbreindex('database_name.dbo.Employee','',90) 然后再用DBCC SHOWCONTIG查看重构索引后的结果: DBCC SHOWCONTIG scanning 'Employee' table... Table: 'Employee' (1195151303); index ID: 1, database ID: 53 TABLE level scan performed. - Pages Scanned................................: 178 - Extents Scanned..............................: 23 - Extent Switches..............................: 22 - Avg. Pages per Extent........................: 7.7 - Scan Density [Best Count:Actual Count].......: 100.00% [23:23] - Logical Scan Fragmentation ..................: 0.00% - Extent Scan Fragmentation ...................: 0.00% - Avg. Bytes Free per Page.....................: 509.5 - Avg. Page Density (full).....................: 93.70% DBCC execution completed. If DBCC printed error messages, contact your system administrator. 通过结果我们可以看到Scan Denity为100%。 
      

  9.   

    SQL Server 索引结构及其使用(一)
    一、深入浅出理解索引结构
      实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别:
      其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。
      如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。
      通过以上例子,我们可以理解到什么是“聚集索引”和“非聚集索引”。进一步引申一下,我们可以很容易的理解:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。
    二、何时使用聚集索引或非聚集索引
    下面的表总结了何时使用聚集索引或非聚集索引(很重要):
    动作描述 使用聚集索引 使用非聚集索引
    列经常被分组排序 应 应
    返回某范围内的数据 应 不应
    一个或极少不同值 不应 不应
    小数目的不同值 应 不应
    大数目的不同值 不应 应
    频繁更新的列 不应 应
    外键列 应 应
    主键列 应 应
    频繁修改索引列 不应 应
    事实上,我们可以通过前面聚集索引和非聚集索引的定义的例子来理解上表。如:返回某范围内的数据一项。比如您的某个表有一个时间列,恰好您把聚合索引建立在了该列,这时您查询2004年1月1日至2004年10月1日之间的全部数据时,这个速度就将是很快的,因为您的这本字典正文是按日期进行排序的,聚类索引只需要找到要检索的所有数据中的开头和结尾数据即可;而不像非聚集索引,必须先查到目录中查到每一项数据对应的页码,然后再根据页码查到具体内容。
    三、结合实际,谈索引使用的误区
      理论的目的是应用。虽然我们刚才列出了何时应使用聚集索引或非聚集索引,但在实践中以上规则却很容易被忽视或不能根据实际情况进行综合分析。下面我们将根据在实践中遇到的实际问题来谈一下索引使用的误区,以便于大家掌握索引建立的方法。
    1、主键就是聚集索引
      这种想法笔者认为是极端错误的,是对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。
      通常,我们会在每个表中都建立一个ID列,以区分每条数据,并且这个ID列是自动增大的,步长一般为1。我们的这个办公自动化的实例中的列Gid就是如此。此时,如果我们将这个列设为主键,SQL SERVER会将此列默认为聚集索引。这样做有好处,就是可以让您的数据在数据库中按照ID进行物理排序,但笔者认为这样做意义不大。
      显而易见,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。
      从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。
      在办公自动化系统中,无论是系统首页显示的需要用户签收的文件、会议还是用户进行文件查询等任何情况下进行数据查询都离不开字段的是“日期”还有用户本身的“用户名”。
      通常,办公自动化的首页会显示每个用户尚未签收的文件或会议。虽然我们的where语句可以仅仅限制当前用户尚未签收的情况,但如果您的系统已建立了很长时间,并且数据量很大,那么,每次每个用户打开首页的时候都进行一次全表扫描,这样做意义是不大的,绝大多数的用户1个月前的文件都已经浏览过了,这样做只能徒增数据库的开销而已。事实上,我们完全可以让用户打开系统首页时,数据库仅仅查询这个用户近3个月来未阅览的文件,通过“日期”这个字段来限制表扫描,提高查询速度。如果您的办公自动化系统已经建立的2年,那么您的首页显示速度理论上将是原来速度8倍,甚至更快。
      在这里之所以提到“理论上”三字,是因为如果您的聚集索引还是盲目地建在ID这个主键上时,您的查询速度是没有这么高的,即使您在“日期”这个字段上建立的索引(非聚合索引)。下面我们就来看一下在1000万条数据量的情况下各种查询的速度表现(3个月内的数据为25万条):
    (1)仅在主键上建立聚集索引,并且不划分时间段:
    Select gid,fariqi,neibuyonghu,title from tgongwen
    用时:128470毫秒(即:128秒)
    (2)在主键上建立聚集索引,在fariq上建立非聚集索引:
    select gid,fariqi,neibuyonghu,title from Tgongwen
    where fariqi> dateadd(day,-90,getdate())
    用时:53763毫秒(54秒)
    (3)将聚合索引建立在日期列(fariqi)上:
    select gid,fariqi,neibuyonghu,title from Tgongwen
    where fariqi> dateadd(day,-90,getdate())
    用时:2423毫秒(2秒)
      虽然每条语句提取出来的都是25万条数据,各种情况的差异却是巨大的,特别是将聚集索引建立在日期列时的差异。事实上,如果您的数据库真的有1000万容量的话,把主键建立在ID列上,就像以上的第1、2种情况,在网页上的表现就是超时,根本就无法显示。这也是我摒弃ID列作为聚集索引的一个最重要的因素。得出以上速度的方法是:在各个select语句前加:
    declare @d datetime
    set @d=getdate()
    并在select语句后加:
    select [语句执行花费时间(毫秒)]=datediff(ms,@d,getdate())
    2、只要建立索引就能显著提高查询速度
      事实上,我们可以发现上面的例子中,第2、3条语句完全相同,且建立索引的字段也相同;不同的仅是前者在fariqi字段上建立的是非聚合索引,后者在此字段上建立的是聚合索引,但查询速度却有着天壤之别。所以,并非是在任何字段上简单地建立索引就能提高查询速度。
      从建表的语句中,我们可以看到这个有着1000万数据的表中fariqi字段有5003个不同记录。在此字段上建立聚合索引是再合适不过了。在现实中,我们每天都会发几个文件,这几个文件的发文日期就相同,这完全符合建立聚集索引要求的:“既不能绝大多数都相同,又不能只有极少数相同”的规则。由此看来,我们建立“适当”的聚合索引对于我们提高查询速度是非常重要的。
    3、把所有需要提高查询速度的字段都加进聚集索引,以提高查询速度
      上面已经谈到:在进行数据查询时都离不开字段的是“日期”还有用户本身的“用户名”。既然这两个字段都是如此的重要,我们可以把他们合并起来,建立一个复合索引(compound index)。
      很多人认为只要把任何字段加进聚集索引,就能提高查询速度,也有人感到迷惑:如果把复合的聚集索引字段分开查询,那么查询速度会减慢吗?带着这个问题,我们来看一下以下的查询速度(结果集都是25万条数据):(日期列fariqi首先排在复合聚集索引的起始列,用户名neibuyonghu排在后列):
    (1)select gid,fariqi,neibuyonghu,title from Tgongwen where fariqi>''2004-5-5'' 
    查询速度:2513毫秒
    (2)select gid,fariqi,neibuyonghu,title from Tgongwen 
      where fariqi>''2004-5-5'' and neibuyonghu=''办公室''
    查询速度:2516毫秒
    (3)select gid,fariqi,neibuyonghu,title from Tgongwen where neibuyonghu=''办公室''
    查询速度:60280毫秒
      从以上试验中,我们可以看到如果仅用聚集索引的起始列作为查询条件和同时用到复合聚集索引的全部列的查询速度是几乎一样的,甚至比用上全部的复合索引列还要略快(在查询结果集数目一样的情况下);而如果仅用复合聚集索引的非起始列作为查询条件的话,这个索引是不起任何作用的。当然,语句1、2的查询速度一样是因为查询的条目数一样,如果复合索引的所有列都用上,而且查询结果少的话,这样就会形成“索引覆盖”,因而性能可以达到最优。同时,请记住:无论您是否经常使用聚合索引的其他列,但其前导列一定要是使用最频繁的列。
    四、其他书上没有的索引使用经验总结
    1、用聚合索引比用不是聚合索引的主键速度快
      下面是实例语句:(都是提取25万条数据)
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16''
    使用时间:3326毫秒
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid<=250000
    使用时间:4470毫秒
    这里,用聚合索引比用不是聚合索引的主键速度快了近1/4。
    2、用聚合索引比用一般的主键作order by时速度快,特别是在小数据量情况下
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by fariqi
    用时:12936
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen order by gid
    用时:18843
      这里,用聚合索引比用一般的主键作order by时,速度快了3/10。事实上,如果数据量很小的话,用聚集索引作为排序列要比使用非聚集索引速度快得明显的多;而数据量如果很大的话,如10万以上,则二者的速度差别不明显。
    3、使用聚合索引内的时间段,搜索时间会按数据占整个数据表的百分比成比例减少,而无论聚合索引使用了多少个:
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>''2004-1-1''
    用时:6343毫秒(提取100万条) 
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi>''2004-6-6''
    用时:3170毫秒(提取50万条)
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16''
    用时:3326毫秒(和上句的结果一模一样。如果采集的数量一样,那么用大于号和等于号是一样的)
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen 
      where fariqi>''2004-1-1'' and fariqi<''2004-6-6''
    用时:3280毫秒
    4、日期列不会因为有分秒的输入而减慢查询速度
      下面的例子中,共有100万条数据,2004年1月1日以后的数据有50万条,但只有两个不同的日期,日期精确到日;之前有数据50万条,有5000个不同的日期,日期精确到秒。
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen 
      where fariqi>''2004-1-1'' order by fariqi
    用时:6390毫秒
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen 
      where fariqi<''2004-1-1'' order by fariqi
    用时:6453毫秒
    五、其他注意事项
      “水可载舟,亦可覆舟”,索引也一样。索引有助于提高检索性能,但过多或不当的索引也会导致系统低效。因为用户在表中每加进一个索引,数据库就要做更多的工作。过多的索引甚至会导致索引碎片。
      所以说,我们要建立一个“适当”的索引体系,特别是对聚合索引的创建,更应精益求精,以使您的数据库能得到高性能的发挥。
      当然,在实践中,作为一个尽职的数据库管理员,您还要多测试一些方案,找出哪种方案效率最高、最为有效。
    改善SQL语句
      

  10.   

    SQL Server 索引结构及其使用(二)
    改善SQL语句
      很多人不知道SQL语句在SQL SERVER中是如何执行的,他们担心自己所写的SQL语句会被SQL SERVER误解。比如:
    select * from table1 where name=''zhangsan'' and tID > 10000
    和执行:
    select * from table1 where tID > 10000 and name=''zhangsan''
      一些人不知道以上两条语句的执行效率是否一样,因为如果简单的从语句先后上看,这两个语句的确是不一样,如果tID是一个聚合索引,那么后一句仅仅从表的10000条以后的记录中查找就行了;而前一句则要先从全表中查找看有几个name=''zhangsan''的,而后再根据限制条件条件tID>10000来提出查询结果。
      事实上,这样的担心是不必要的。SQL SERVER中有一个“查询分析优化器”,它可以计算出where子句中的搜索条件并确定哪个索引能缩小表扫描的搜索空间,也就是说,它能实现自动优化。
      虽然查询优化器可以根据where子句自动的进行查询优化,但大家仍然有必要了解一下“查询优化器”的工作原理,如非这样,有时查询优化器就会不按照您的本意进行快速查询。
      在查询分析阶段,查询优化器查看查询的每个阶段并决定限制需要扫描的数据量是否有用。如果一个阶段可以被用作一个扫描参数(SARG),那么就称之为可优化的,并且可以利用索引快速获得所需数据。
      SARG的定义:用于限制搜索的一个操作,因为它通常是指一个特定的匹配,一个值得范围内的匹配或者两个以上条件的AND连接。形式如下:
    列名 操作符 <常数 或 变量>

    <常数 或 变量> 操作符列名
    列名可以出现在操作符的一边,而常数或变量出现在操作符的另一边。如:
    Name=’张三’
    价格>5000
    5000<价格
    Name=’张三’ and 价格>5000
      如果一个表达式不能满足SARG的形式,那它就无法限制搜索的范围了,也就是SQL SERVER必须对每一行都判断它是否满足WHERE子句中的所有条件。所以一个索引对于不满足SARG形式的表达式来说是无用的。
      介绍完SARG后,我们来总结一下使用SARG以及在实践中遇到的和某些资料上结论不同的经验:
    1、Like语句是否属于SARG取决于所使用的通配符的类型
    如:name like ‘张%’ ,这就属于SARG
    而:name like ‘%张’ ,就不属于SARG。
    原因是通配符%在字符串的开通使得索引无法使用。
    2、or 会引起全表扫描
      Name=’张三’ and 价格>5000 符号SARG,而:Name=’张三’ or 价格>5000 则不符合SARG。使用or会引起全表扫描。
    3、非操作符、函数引起的不满足SARG形式的语句
      不满足SARG形式的语句最典型的情况就是包括非操作符的语句,如:NOT、!=、<>、!<、!>、NOT EXISTS、NOT IN、NOT LIKE等,另外还有函数。下面就是几个不满足SARG形式的例子:
    ABS(价格)<5000
    Name like ‘%三’
    有些表达式,如:
    WHERE 价格*2>5000
    SQL SERVER也会认为是SARG,SQL SERVER会将此式转化为:
    WHERE 价格>2500/2
    但我们不推荐这样使用,因为有时SQL SERVER不能保证这种转化与原始表达式是完全等价的。
    4、IN 的作用相当与OR
    语句:
    Select * from table1 where tid in (2,3)

    Select * from table1 where tid=2 or tid=3
    是一样的,都会引起全表扫描,如果tid上有索引,其索引也会失效。
    5、尽量少用NOT
    6、exists 和 in 的执行效率是一样的
      很多资料上都显示说,exists要比in的执行效率要高,同时应尽可能的用not exists来代替not in。但事实上,我试验了一下,发现二者无论是前面带不带not,二者之间的执行效率都是一样的。因为涉及子查询,我们试验这次用SQL SERVER自带的pubs数据库。运行前我们可以把SQL SERVER的statistics I/O状态打开:
    (1)select title,price from titles where title_id in (select title_id from sales where qty>30)
    该句的执行结果为:
    表 ''sales''。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
    表 ''titles''。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
    (2)select title,price from titles 
      where exists (select * from sales 
      where sales.title_id=titles.title_id and qty>30)
    第二句的执行结果为:
    表 ''sales''。扫描计数 18,逻辑读 56 次,物理读 0 次,预读 0 次。
    表 ''titles''。扫描计数 1,逻辑读 2 次,物理读 0 次,预读 0 次。
    我们从此可以看到用exists和用in的执行效率是一样的。
    7、用函数charindex()和前面加通配符%的LIKE执行效率一样
      前面,我们谈到,如果在LIKE前面加上通配符%,那么将会引起全表扫描,所以其执行效率是低下的。但有的资料介绍说,用函数charindex()来代替LIKE速度会有大的提升,经我试验,发现这种说明也是错误的:
    select gid,title,fariqi,reader from tgongwen 
      where charindex(''刑侦支队'',reader)>0 and fariqi>''2004-5-5''
    用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
    select gid,title,fariqi,reader from tgongwen 
      where reader like ''%'' + ''刑侦支队'' + ''%'' and fariqi>''2004-5-5''
    用时:7秒,另外:扫描计数 4,逻辑读 7155 次,物理读 0 次,预读 0 次。
    8、union并不绝对比or的执行效率高
      我们前面已经谈到了在where子句中使用or会引起全表扫描,一般的,我所见过的资料都是推荐这里用union来代替or。事实证明,这种说法对于大部分都是适用的。
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen 
      where fariqi=''2004-9-16'' or gid>9990000
    用时:68秒。扫描计数 1,逻辑读 404008 次,物理读 283 次,预读 392163 次。
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16'' 
    union
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where gid>9990000
    用时:9秒。扫描计数 8,逻辑读 67489 次,物理读 216 次,预读 7499 次。
    看来,用union在通常情况下比用or的效率要高的多。
      但经过试验,笔者发现如果or两边的查询列是一样的话,那么用union则反倒和用or的执行速度差很多,虽然这里union扫描的是索引,而or扫描的是全表。
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen 
      where fariqi=''2004-9-16'' or fariqi=''2004-2-5''
    用时:6423毫秒。扫描计数 2,逻辑读 14726 次,物理读 1 次,预读 7176 次。
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-9-16'' 
    union
    select gid,fariqi,neibuyonghu,reader,title from Tgongwen where fariqi=''2004-2-5''
    用时:11640毫秒。扫描计数 8,逻辑读 14806 次,物理读 108 次,预读 1144 次。
    9、字段提取要按照“需多少、提多少”的原则,避免“select *”
      我们来做一个试验:
    select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
    用时:4673毫秒
    select top 10000 gid,fariqi,title from tgongwen order by gid desc
    用时:1376毫秒
    select top 10000 gid,fariqi from tgongwen order by gid desc
    用时:80毫秒
      由此看来,我们每少提取一个字段,数据的提取速度就会有相应的提升。提升的速度还要看您舍弃的字段的大小来判断。
    10、count(*)不比count(字段)慢
      某些资料上说:用*会统计所有列,显然要比一个世界的列名效率低。这种说法其实是没有根据的。我们来看:
    select count(*) from Tgongwen
    用时:1500毫秒
    select count(gid) from Tgongwen 
    用时:1483毫秒
    select count(fariqi) from Tgongwen
    用时:3140毫秒
    select count(title) from Tgongwen
    用时:52050毫秒
      从以上可以看出,如果用count(*)和用count(主键)的速度是相当的,而count(*)却比其他任何除主键以外的字段汇总速度要快,而且字段越长,汇总的速度就越慢。我想,如果用count(*), SQL SERVER可能会自动查找最小字段来汇总的。当然,如果您直接写count(主键)将会来的更直接些。
    11、order by按聚集索引列排序效率最高
      我们来看:(gid是主键,fariqi是聚合索引列):
    select top 10000 gid,fariqi,reader,title from tgongwen
    用时:196 毫秒。 扫描计数 1,逻辑读 289 次,物理读 1 次,预读 1527 次。
    select top 10000 gid,fariqi,reader,title from tgongwen order by gid asc
    用时:4720毫秒。 扫描计数 1,逻辑读 41956 次,物理读 0 次,预读 1287 次。
    select top 10000 gid,fariqi,reader,title from tgongwen order by gid desc
    用时:4736毫秒。 扫描计数 1,逻辑读 55350 次,物理读 10 次,预读 775 次。
    select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi asc
    用时:173毫秒。 扫描计数 1,逻辑读 290 次,物理读 0 次,预读 0 次。
    select top 10000 gid,fariqi,reader,title from tgongwen order by fariqi desc
    用时:156毫秒。 扫描计数 1,逻辑读 289 次,物理读 0 次,预读 0 次。
      从以上我们可以看出,不排序的速度以及逻辑读次数都是和“order by 聚集索引列” 的速度是相当的,但这些都比“order by 非聚集索引列”的查询速度是快得多的。
      同时,按照某个字段进行排序的时候,无论是正序还是倒序,速度是基本相当的。
    12、高效的TOP
      事实上,在查询和提取超大容量的数据集时,影响数据库响应时间的最大因素不是数据查找,而是物理的I/0操作。如:
    select top 10 * from (
       select top 10000 gid,fariqi,title from tgongwen
       where neibuyonghu=''办公室''
       order by gid desc) as a
    order by gid asc
      这条语句,从理论上讲,整条语句的执行时间应该比子句的执行时间长,但事实相反。因为,子句执行后返回的是10000条记录,而整条语句仅返回10条语句,所以影响数据库响应时间最大的因素是物理I/O操作。而限制物理I/O操作此处的最有效方法之一就是使用TOP关键词了。TOP关键词是SQL SERVER中经过系统优化过的一个用来提取前几条或前几个百分比数据的词。经笔者在实践中的应用,发现TOP确实很好用,效率也很高。但这个词在另外一个大型数据库ORACLE中却没有,这不能说不是一个遗憾,虽然在ORACLE中可以用其他方法(如:rownumber)来解决。在以后的关于“实现千万级数据的分页显示存储过程”的讨论中,我们就将用到TOP这个关键词。
      到此为止,我们上面讨论了如何实现从大容量的数据库中快速地查询出您所需要的数据方法。当然,我们介绍的这些方法都是“软”方法,在实践中,我们还要考虑各种“硬”因素,如:网络性能、服务器的性能、操作系统的性能,甚至网卡、交换机等。
      

  11.   

    SQL Server 索引结构及其使用(三)
    实现小数据量和海量数据的通用分页显示存储过程
      建立一个 Web 应用,分页浏览功能必不可少。这个问题是数据库处理中十分常见的问题。经典的数据分页方法是:ADO 纪录集分页法,也就是利用ADO自带的分页功能(利用游标)来实现分页。但这种分页方法仅适用于较小数据量的情形,因为游标本身有缺点:游标是存放在内存中,很费内存。游标一建立,就将相关的记录锁住,直到取消游标。游标提供了对特定集合中逐行扫描的手段,一般使用游标来逐行遍历数据,根据取出数据条件的不同进行不同的操作。而对于多表和大表中定义的游标(大的数据集合)循环很容易使程序进入一个漫长的等待甚至死机。
      更重要的是,对于非常大的数据模型而言,分页检索时,如果按照传统的每次都加载整个数据源的方法是非常浪费资源的。现在流行的分页方法一般是检索页面大小的块区的数据,而非检索所有的数据,然后单步执行当前行。
      最早较好地实现这种根据页面大小和页码来提取数据的方法大概就是“俄罗斯存储过程”。这个存储过程用了游标,由于游标的局限性,所以这个方法并没有得到大家的普遍认可。
      后来,网上有人改造了此存储过程,下面的存储过程就是结合我们的办公自动化实例写的分页存储过程:
    CREATE procedure pagination1
    (@pagesize int, --页面大小,如每页存储20条记录
    @pageindex int --当前页码
    )
    as
    set nocount on
    begin
       declare @indextable table(id int identity(1,1),nid int) --定义表变量
       declare @PageLowerBound int --定义此页的底码
       declare @PageUpperBound int --定义此页的顶码
       set @PageLowerBound=(@pageindex-1)*@pagesize
       set @PageUpperBound=@PageLowerBound+@pagesize
       set rowcount @PageUpperBound
       insert into @indextable(nid) select gid from TGongwen 
         where fariqi >dateadd(day,-365,getdate()) order by fariqi desc
       select O.gid,O.mid,O.title,O.fadanwei,O.fariqi from TGongwen O,@indextable t 
              where O.gid=t.nid and t.id>@PageLowerBound 
                            and t.id<=@PageUpperBound order by t.id
    end
    set nocount off
      以上存储过程运用了SQL SERVER的最新技术――表变量。应该说这个存储过程也是一个非常优秀的分页存储过程。当然,在这个过程中,您也可以把其中的表变量写成临时表:CREATE TABLE #Temp。但很明显,在SQL SERVER中,用临时表是没有用表变量快的。所以笔者刚开始使用这个存储过程时,感觉非常的不错,速度也比原来的ADO的好。但后来,我又发现了比此方法更好的方法。
      笔者曾在网上看到了一篇小短文《从数据表中取出第n条到第m条的记录的方法》,全文如下:
    从publish 表中取出第 n 条到第 m 条的记录: 
    SELECT TOP m-n+1 * 
    FROM publish 
    WHERE (id NOT IN 
      (SELECT TOP n-1 id 
         FROM publish)) 
    id 为publish 表的关键字 
      我当时看到这篇文章的时候,真的是精神为之一振,觉得思路非常得好。等到后来,我在作办公自动化系统(ASP.NET+ C#+SQL SERVER)的时候,忽然想起了这篇文章,我想如果把这个语句改造一下,这就可能是一个非常好的分页存储过程。于是我就满网上找这篇文章,没想到,文章还没找到,却找到了一篇根据此语句写的一个分页存储过程,这个存储过程也是目前较为流行的一种分页存储过程,我很后悔没有争先把这段文字改造成存储过程:
    CREATE PROCEDURE pagination2
    (
    @SQL nVARCHAR(4000), --不带排序语句的SQL语句
    @Page int, --页码
    @RecsPerPage int, --每页容纳的记录数
    @ID VARCHAR(255), --需要排序的不重复的ID号
    @Sort VARCHAR(255) --排序字段及规则
    )
    AS
    DECLARE @Str nVARCHAR(4000)
    SET @Str=''SELECT TOP ''+CAST(@RecsPerPage AS VARCHAR(20))+'' * FROM 
    (''+@SQL+'') T WHERE T.''+@ID+''NOT IN (SELECT TOP  
    ''+CAST((@RecsPerPage*(@Page-1)) 
    AS VARCHAR(20))+'' ''+@ID+'' FROM (''+@SQL+'') T9 ORDER BY ''+@Sort+'') ORDER BY ''+@Sort
    PRINT @Str
    EXEC sp_ExecuteSql @Str
    GO
    其实,以上语句可以简化为:
    SELECT TOP 页大小 *
    FROM Table1
     WHERE (ID NOT IN (SELECT TOP 页大小*页数 id FROM 表 ORDER BY id))
    ORDER BY ID
    但这个存储过程有一个致命的缺点,就是它含有NOT IN字样。虽然我可以把它改造为:
    SELECT TOP 页大小 *
    FROM Table1 WHERE not exists
    (select * from (select top (页大小*页数) * from table1 order by id) b where b.id=a.id )
    order by id
      即,用not exists来代替not in,但我们前面已经谈过了,二者的执行效率实际上是没有区别的。既便如此,用TOP 结合NOT IN的这个方法还是比用游标要来得快一些。
      虽然用not exists并不能挽救上个存储过程的效率,但使用SQL SERVER中的TOP关键字却是一个非常明智的选择。因为分页优化的最终目的就是避免产生过大的记录集,而我们在前面也已经提到了TOP的优势,通过TOP 即可实现对数据量的控制。
      在分页算法中,影响我们查询速度的关键因素有两点:TOP和NOT IN。TOP可以提高我们的查询速度,而NOT IN会减慢我们的查询速度,所以要提高我们整个分页算法的速度,就要彻底改造NOT IN,同其他方法来替代它。
      我们知道,几乎任何字段,我们都可以通过max(字段)或min(字段)来提取某个字段中的最大或最小值,所以如果这个字段不重复,那么就可以利用这些不重复的字段的max或min作为分水岭,使其成为分页算法中分开每页的参照物。在这里,我们可以用操作符“>”或“<”号来完成这个使命,使查询语句符合SARG形式。如:
    Select top 10 * from table1 where id>200
    于是就有了如下分页方案:
    select top 页大小 *
    from table1 
    where id>
    (select max (id) from (select top ((页码-1)*页大小) id from table1 order by id) as T

    order by id
      在选择即不重复值,又容易分辨大小的列时,我们通常会选择主键。下表列出了笔者用有着1000万数据的办公自动化系统中的表,在以GID(GID是主键,但并不是聚集索引。)为排序列、提取gid,fariqi,title字段,分别以第1、10、100、500、1000、1万、10万、25万、50万页为例,测试以上三种分页方案的执行速度:(单位:毫秒)
    页码 方案1 方案2 方案3 1 60 30 76
    10 46 16 63
    100 1076 720 130
    500 540 12943 83
    1000 17110 470 250
    10000 24796 4500 140
    100000 38326 42283 1553
    250000 28140 128720 2330
    500000 121686 127846 7168
      从上表中,我们可以看出,三种存储过程在执行100页以下的分页命令时,都是可以信任的,速度都很好。但第一种方案在执行分页1000页以上后,速度就降了下来。第二种方案大约是在执行分页1万页以上后速度开始降了下来。而第三种方案却始终没有大的降势,后劲仍然很足。
      在确定了第三种分页方案后,我们可以据此写一个存储过程。大家知道SQL SERVER的存储过程是事先编译好的SQL语句,它的执行效率要比通过WEB页面传来的SQL语句的执行效率要高。下面的存储过程不仅含有分页方案,还会根据页面传来的参数来确定是否进行数据总数统计。
    --获取指定页的数据:
    CREATE PROCEDURE pagination3
    @tblName varchar(255), -- 表名
    @strGetFields varchar(1000) = ''*'', -- 需要返回的列 
    @fldName varchar(255)='''', -- 排序的字段名
    @PageSize int = 10, -- 页尺寸
    @PageIndex int = 1, -- 页码
    @doCount bit = 0, -- 返回记录总数, 非 0 值则返回
    @OrderType bit = 0, -- 设置排序类型, 非 0 值则降序
    @strWhere varchar(1500) = '''' -- 查询条件 (注意: 不要加 where)
    AS
    declare @strSQL varchar(5000) -- 主语句
    declare @strTmp varchar(110) -- 临时变量
    declare @strOrder varchar(400) -- 排序类型
    if @doCount != 0
    begin
       if @strWhere !=''''
          set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere
       else
          set @strSQL = "select count(*) as Total from [" + @tblName + "]"
    end --以上代码的意思是如果@doCount传递过来的不是0,就执行总数统计。以下的所有代码都是@doCount为0的情况:
    else
    begin
       if @OrderType != 0
        begin
            set @strTmp = "<(select min"
            set @strOrder = " order by [" + @fldName +"] desc"--如果@OrderType不是0,就执行降序,这句很重要!
        end
       else
         begin
            set @strTmp = ">(select max"
            set @strOrder = " order by [" + @fldName +"] asc"
         end
        if @PageIndex = 1
         begin
            if @strWhere != '''' 
               set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ "
                from [" + @tblName + "] where " + @strWhere + " " + @strOrder
            else
               set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " 
              from ["+ @tblName + "] "+ @strOrder
                  --如果是第一页就执行以上代码,这样会加快执行速度
         end
        else
          begin--以下代码赋予了@strSQL以真正执行的SQL代码
           set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
            + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) 
            from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] 
            from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder
          if @strWhere != ''''
            set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
              + @tblName + "] where [" + @fldName + "]" + @strTmp + "(["
              + @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["
              + @fldName + "] from [" + @tblName + "] where " + @strWhere + " "
             + @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder
           end 
    end 
    exec (@strSQL)
    GO
      上面的这个存储过程是一个通用的存储过程,其注释已写在其中了。 在大数据量的情况下,特别是在查询最后几页的时候,查询时间一般不会超过9秒;而用其他存储过程,在实践中就会导致超时,所以这个存储过程非常适用于大容量数据库的查询。 笔者希望能够通过对以上存储过程的解析,能给大家带来一定的启示,并给工作带来一定的效率提升,同时希望同行提出更优秀的实时数据分页算法。
    聚集索引的重要性和如何选择聚集索引
      在上一节的标题中,笔者写的是:实现小数据量和海量数据的通用分页显示存储过程。这是因为在将本存储过程应用于“办公自动化”系统的实践中时,笔者发现这第三种存储过程在小数据量的情况下,有如下现象:
    1、分页速度一般维持在1秒和3秒之间。
    2、在查询最后一页时,速度一般为5秒至8秒,哪怕分页总数只有3页或30万页。
      虽然在超大容量情况下,这个分页的实现过程是很快的,但在分前几页时,这个1-3秒的速度比起第一种甚至没有经过优化的分页方法速度还要慢,借用户的话说就是“还没有ACCESS数据库速度快”,这个认识足以导致用户放弃使用您开发的系统。
      笔者就此分析了一下,原来产生这种现象的症结是如此的简单,但又如此的重要:排序的字段不是聚集索引!
      本篇文章的题目是:“查询优化及分页算法方案”。笔者只所以把“查询优化”和“分页算法”这两个联系不是很大的论题放在一起,就是因为二者都需要一个非常重要的东西――聚集索引。
    在前面的讨论中我们已经提到了,聚集索引有两个最大的优势:
    1、以最快的速度缩小查询范围。
    2、以最快的速度进行字段排序。
      第1条多用在查询优化时,而第2条多用在进行分页时的数据排序。
      而聚集索引在每个表内又只能建立一个,这使得聚集索引显得更加的重要。聚集索引的挑选可以说是实现“查询优化”和“高效分页”的最关键因素。
      但要既使聚集索引列既符合查询列的需要,又符合排序列的需要,这通常是一个矛盾。笔者前面“索引”的讨论中,将fariqi,即用户发文日期作为了聚集索引的起始列,日期的精确度为“日”。这种作法的优点,前面已经提到了,在进行划时间段的快速查询中,比用ID主键列有很大的优势。
      但在分页时,由于这个聚集索引列存在着重复记录,所以无法使用max或min来最为分页的参照物,进而无法实现更为高效的排序。而如果将ID主键列作为聚集索引,那么聚集索引除了用以排序之外,没有任何用处,实际上是浪费了聚集索引这个宝贵的资源。
      为解决这个矛盾,笔者后来又添加了一个日期列,其默认值为getdate()。用户在写入记录时,这个列自动写入当时的时间,时间精确到毫秒。即使这样,为了避免可能性很小的重合,还要在此列上创建UNIQUE约束。将此日期列作为聚集索引列。
      有了这个时间型聚集索引列之后,用户就既可以用这个列查找用户在插入数据时的某个时间段的查询,又可以作为唯一列来实现max或min,成为分页算法的参照物。
      经过这样的优化,笔者发现,无论是大数据量的情况下还是小数据量的情况下,分页速度一般都是几十毫秒,甚至0毫秒。而用日期段缩小范围的查询速度比原来也没有任何迟钝。聚集索引是如此的重要和珍贵,所以笔者总结了一下,一定要将聚集索引建立在:
    1、您最频繁使用的、用以缩小查询范围的字段上;
    2、您最频繁使用的、需要排序的字段上。
      

  12.   


    结束语
      本篇文章汇集了笔者近段在使用数据库方面的心得,是在做“办公自动化”系统时实践经验的积累。希望这篇文章不仅能够给大家的工作带来一定的帮助,也希望能让大家能够体会到分析问题的方法;最重要的是,希望这篇文章能够抛砖引玉,掀起大家的学习和讨论的兴趣,以共同促进,共同为公安科技强警事业和金盾工程做出自己最大的努力。
      最后需要说明的是,在试验中,我发现用户在进行大数据量查询的时候,对数据库速度影响最大的不是内存大小,而是CPU。在我的P4 2.4机器上试验的时候,查看“资源管理器”,CPU经常出现持续到100%的现象,而内存用量却并没有改变或者说没有大的改变。即使在我们的HP ML 350 G3服务器上试验时,CPU峰值也能达到90%,一般持续在70%左右。
      本文的试验数据都是来自我们的HP ML 350服务器。服务器配置:双Inter Xeon 超线程 CPU 2.4G,内存1G,操作系统Windows Server 2003 Enterprise Edition,数据库SQL Server 2000 SP3
      

  13.   

    http://blog.csdn.net/Haiwer/archive/2008/08/25/2826881.aspx