update User
   with (updlock,rowlock)
    set f_money = f_money + 100
  where f_name = '张三'  其中的with (updlock,rowlock)作用是??
 如果执行上面语句时,出现了错误(具体什么错误不知道),此时会对‘张三’这行记录上锁吗?
 之后再执行此语句能成功吗?

解决方案 »

  1.   

    ROWLOCK 使用行级锁,而不使用粒度更粗的页级锁和表级锁。 
    UPDLOCK 读取表时使用更新锁,而不使用共享锁,并将锁一直保留到语句或事务的结束。UPDLOCK 的优点是允许您读取数据(不阻塞其它事务)并在以后更新数据,同时确保自从上次读取数据后数据没有被更改。 
    XLOCK 使用排它锁并一直保持到由语句处理的所有数据上的事务结束时。可以使用 PAGLOCK 或 TABLOCK 指定该锁,这种情况下排它锁适用于适当级别的粒度。 
      

  2.   

    看不出有什么不同,查询完全没有影响 
    ROWLOCK   
    使用行级锁,而不使用粒度更粗的页级锁和表级锁。   
    UPDLOCK 
    读取表时使用更新锁,而不使用共享锁,并将锁一直保留到语句或事务的结束。UPDLOCK   的优点是允许您读取数据(不阻塞其它事务)并在以后更新数据,同时确保自从上次读取数据后数据没有被更改。
      

  3.   

    你参考一下吧 
    你参考下面的文章. 锁的概述 一. 为什么要引入锁 多个用户同时对数据库的并发操作时会带来以下数据不一致的问题: 丢失更新 
    A,B两个用户读同一数据并进行修改,其中一个用户的修改结果破坏了另一个修改的结果,比如订票系统 脏读 
    A用户修改了数据,随后B用户又读出该数据,但A用户因为某些原因取消了对数据的修改,数据恢复原值,此时B得到的数据就与数据库内的数据产生了不一致 不可重复读 
    A用户读取数据,随后B用户读出该数据并修改,此时A用户再读取数据时发现前后两次的值不一致 并发控制的主要方法是封锁,锁就是在一段时间内禁止用户做某些操作以避免产生数据不一致 二 锁的分类 锁的类别有两种分法: 1. 从数据库系统的角度来看:分为独占锁(即排它锁),共享锁和更新锁 MS-SQL Server 使用以下资源锁模式。 锁模式 描述 
    共享 (S) 用于不更改或不更新数据的操作(只读操作),如 SELECT 语句。 
    更新 (U) 用于可更新的资源中。防止当多个会话在读取、锁定以及随后可能进行的资源更新时发生常见形式的死锁。 
    排它 (X) 用于数据修改操作,例如 INSERT、UPDATE 或 DELETE。确保不会同时同一资源进行多重更新。 
    意向锁 用于建立锁的层次结构。意向锁的类型为:意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 
    架构锁 在执行依赖于表架构的操作时使用。架构锁的类型为:架构修改 (Sch-M) 和架构稳定性 (Sch-S)。 
    大容量更新 (BU) 向表中大容量复制数据并指定了 TABLOCK 提示时使用。 共享锁 
    共享 (S) 锁允许并发事务读取 (SELECT) 一个资源。资源上存在共享 (S) 锁时,任何其它事务都不能修改数据。一旦已经读取数据,便立即释放资源上的共享 (S) 锁,除非将事务隔离级别设置为可重复读或更高级别,或者在事务生存周期内用锁定提示保留共享 (S) 锁。 更新锁 
    更新 (U) 锁可以防止通常形式的死锁。一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。 若要避免这种潜在的死锁问题,请使用更新 (U) 锁。一次只有一个事务可以获得资源的更新 (U) 锁。如果事务修改资源,则更新 (U) 锁转换为排它 (X) 锁。否则,锁转换为共享锁。 排它锁 
    排它 (X) 锁可以防止并发事务对资源进行访问。其它事务不能读取或修改排它 (X) 锁锁定的数据。 意向锁 
    意向锁表示 SQL Server 需要在层次结构中的某些底层资源上获取共享 (S) 锁或排它 (X) 锁。例如,放置在表级的共享意向锁表示事务打算在表中的页或行上放置共享 (S) 锁。在表级设置意向锁可防止另一个事务随后在包含那一页的表上获取排它 (X) 锁。意向锁可以提高性能,因为 SQL Server 仅在表级检查意向锁来确定事务是否可以安全地获取该表上的锁。而无须检查表中的每行或每页上的锁以确定事务是否可以锁定整个表。 意向锁包括意向共享 (IS)、意向排它 (IX) 以及与意向排它共享 (SIX)。 锁模式 描述 
    意向共享 (IS) 通过在各资源上放置 S 锁,表明事务的意向是读取层次结构中的部分(而不是全部)底层资源。 
    意向排它 (IX) 通过在各资源上放置 X 锁,表明事务的意向是修改层次结构中的部分(而不是全部)底层资源。IX 是 IS 的超集。 
    与意向排它共享 (SIX) 通过在各资源上放置 IX 锁,表明事务的意向是读取层次结构中的全部底层资源并修改部分(而不是全部)底层资源。允许顶层资源上的并发 IS 锁。例如,表的 SIX 锁在表上放置一个 SIX 锁(允许并发 IS 锁),在当前所修改页上放置 IX 锁(在已修改行上放置 X 锁)。虽然每个资源在一段时间内只能有一个 SIX 锁,以防止其它事务对资源进行更新,但是其它事务可以通过获取表级的 IS 锁来读取层次结构中的底层资源。 独占锁:只允许进行锁定操作的程序使用,其他任何对他的操作均不会被接受。执行数据更新命令时,SQL Server会自动使用独占锁。当对象上有其他锁存在时,无法对其加独占锁。 
    共享锁:共享锁锁定的资源可以被其他用户读取,但其他用户无法修改它,在执行Select时,SQL Server会对对象加共享锁。 
    更新锁:当SQL Server准备更新数据时,它首先对数据对象作更新锁锁定,这样数据将不能被修改,但可以读取。等到SQL Server确定要进行更新数据操作时,他会自动将更新锁换为独占锁,当对象上有其他锁存在时,无法对其加更新锁。 2. 从程序员的角度看:分为乐观锁和悲观锁。 
    乐观锁:完全依靠数据库来管理锁的工作。 
    悲观锁:程序员自己管理数据或对象上的锁处理。 MS-SQLSERVER 使用锁在多个同时在数据库内执行修改的用户间实现悲观并发控制 三 锁的粒度 
    锁粒度是被封锁目标的大小,封锁粒度小则并发性高,但开销大,封锁粒度大则并发性低但开销小 SQL Server支持的锁粒度可以分为为行、页、键、键范围、索引、表或数据库获取锁 资源 描述 
    RID 行标识符。用于单独锁定表中的一行。 
    键 索引中的行锁。用于保护可串行事务中的键范围。 
    页 8 千字节 (KB) 的数据页或索引页。 
    扩展盘区 相邻的八个数据页或索引页构成的一组。 
    表 包括所有数据和索引在内的整个表。 
    DB 数据库。 四 锁定时间的长短 锁保持的时间长度为保护所请求级别上的资源所需的时间长度。 用于保护读取操作的共享锁的保持时间取决于事务隔离级别。采用 READ COMMITTED 的默认事务隔离级别时,只在读取页的期间内控制共享锁。在扫描中,直到在扫描内的下一页上获取锁时才释放锁。如果指定 HOLDLOCK 提示或者将事务隔离级别设置为 REPEATABLE READ 或 SERIALIZABLE,则直到事务结束才释放锁。 根据为游标设置的并发选项,游标可以获取共享模式的滚动锁以保护提取。当需要滚动锁时,直到下一次提取或关闭游标(以先发生者为准)时才释放滚动锁。但是,如果指定 HOLDLOCK,则直到事务结束才释放滚动锁。 用于保护更新的排它锁将直到事务结束才释放。 
    如果一个连接试图获取一个锁,而该锁与另一个连接所控制的锁冲突,则试图获取锁的连接将一直阻塞到: 将冲突锁释放而且连接获取了所请求的锁。 连接的超时间隔已到期。默认情况下没有超时间隔,但是一些应用程序设置超时间隔以防止无限期等待 五 SQL Server 中锁的自定义 1 处理死锁和设置死锁优先级 死锁就是多个用户申请不同封锁,由于申请者均拥有一部分封锁权而又等待其他用户拥有的部分封锁而引起的无休止的等待 可以使用SET DEADLOCK_PRIORITY控制在发生死锁情况时会话的反应方式。如果两个进程都锁定数据,并且直到其它进程释放自己的锁时,每个进程才能释放自己的锁,即发生死锁情况。 2 处理超时和设置锁超时持续时间。 @@LOCK_TIMEOUT 返回当前会话的当前锁超时设置,单位为毫秒 SET LOCK_TIMEOUT 设置允许应用程序设置语句等待阻塞资源的最长时间。当语句等待的时间大于 LOCK_TIMEOUT 设置时,系统将自动取消阻塞的语句,并给应用程序返回"已超过了锁请求超时时段"的 1222 号错误信息 示例 
    下例将锁超时期限设置为 1,800 毫秒。 
    SET LOCK_TIMEOUT 1800 3) 设置事务隔离级别。 4 ) 对 SELECT、INSERT、UPDATE 和 DELETE 语句使用表级锁定提示。 5) 配置索引的锁定粒度 
    可以使用 sp_indexoption 系统存储过程来设置用于索引的锁定粒度 六 查看锁的信息 1 执行 EXEC SP_LOCK 报告有关锁的信息 
    2 查询分析器中按Ctrl+2可以看到锁的信息 七 使用注意事项 如何避免死锁 
    1 使用事务时,尽量缩短事务的逻辑处理过程,及早提交或回滚事务; 
    2 设置死锁超时参数为合理范围,如:3分钟-10分种;超过时间,自动放弃本次操作,避免进程悬挂; 
    3 优化程序,检查并避免死锁现象出现; 
    4 .对所有的脚本和SP都要仔细测试,在正是版本之前。 
    5 所有的SP都要有错误处理(通过@error) 
    6 一般不要修改SQL SERVER事务的默认级别。不推荐强行加锁 解决问题 如何对行 表 数据库加锁 八 几个有关锁的问题 1 如何锁一个表的某一行 SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED SELECT * FROM table ROWLOCK WHERE id = 1 2 锁定数据库的一个表 SELECT * FROM table WITH (HOLDLOCK) 加锁语句: 
    sybase: 
    update 表 set col1=col1 where 1=0 ; 
    MSSQL: 
    select col1 from 表 (tablockx) where 1=0 ; 
    oracle: 
    LOCK TABLE 表 IN EXCLUSIVE MODE ; 
    加锁后其它人不可操作,直到加锁用户解锁,用commit或rollback解锁 
    几个例子帮助大家加深印象 
    设table1(A,B,C) 
    A B C 
    a1 b1 c1 
    a2 b2 c2 
    a3 b3 c3 1)排它锁 
    新建两个连接 
    在第一个连接中执行以下语句 
    begin tran 
    update table1 
    set A='aa' 
    where B='b2' 
    waitfor delay '00:00:30' --等待30秒 
    commit tran 
    在第二个连接中执行以下语句 
    begin tran 
    select * from table1 
    where B='b2' 
    commit tran 若同时执行上述两个语句,则select查询必须等待update执行完毕才能执行即要等待30秒 2)共享锁 
    在第一个连接中执行以下语句 
    begin tran 
    select * from table1 holdlock -holdlock人为加锁 
    where B='b2' 
    waitfor delay '00:00:30' --等待30秒 
    commit tran 在第二个连接中执行以下语句 
    begin tran 
    select A,C from table1 
    where B='b2' 
    update table1 
    set A='aa' 
    where B='b2' 
    commit tran 若同时执行上述两个语句,则第二个连接中的select查询可以执行 
    而update必须等待第一个事务释放共享锁转为排它锁后才能执行 即要等待30秒 3)死锁 
    增设table2(D,E) 
    D E 
    d1 e1 
    d2 e2 
    在第一个连接中执行以下语句 
    begin tran 
    update table1 
    set A='aa' 
    where B='b2' 
    waitfor delay '00:00:30' 
    update table2 
    set D='d5' 
    where E='e1' 
    commit tran 在第二个连接中执行以下语句 
    begin tran 
    update table2 
    set D='d5' 
    where E='e1' 
    waitfor delay '00:00:10' 
    update table1 
    set A='aa' 
    where B='b2' 
    commit tran 同时执行,系统会检测出死锁,并中止进程 补充一点: 
    Sql Server2000支持的表级锁定提示 HOLDLOCK 持有共享锁,直到整个事务完成,应该在被锁对象不需要时立即释放,等于SERIALIZABLE事务隔离级别 NOLOCK 语句执行时不发出共享锁,允许脏读 ,等于 READ UNCOMMITTED事务隔离级别 PAGLOCK 在使用一个表锁的地方用多个页锁 READPAST 让sql server跳过任何锁定行,执行事务,适用于READ UNCOMMITTED事务隔离级别只跳过RID锁,不跳过页,区域和表锁 ROWLOCK 强制使用行锁 TABLOCKX 强制使用独占表级锁,这个锁在事务期间阻止任何其他事务使用这个表 UPLOCK 强制在读表时使用更新而不用共享锁 应用程序锁: 
    应用程序锁就是客户端代码生成的锁,而不是sql server本身生成的锁 处理应用程序锁的两个过程 sp_getapplock 锁定应用程序资源 sp_releaseapplock 为应用程序资源解锁 注意: 锁定数据库的一个表的区别 SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除 
      

  4.   

    http://hi.baidu.com/kbkiss/blog/item/0d11baf357b85658352acc3e.html楼主参考下
      

  5.   

     了解SQL Server锁争用:NOLOCK 和 ROWLOCK 的秘密
    关系型数据库,如SQL Server,使用锁来避免多用户修改数据时的并发冲突。当一组数据被某个用户锁定时,除非第一个用户结束修改并释放锁,否则其他用户就无法修改该组数据。 有些数据库,包括SQL Server,用锁来避免用户检索未递交的修改记录。在这些系统中,如果用户A在修改一组记录,则其他用户只有等用户A修改完毕了,才能检索。 数据库在每个物理层上设置锁:记录行(rows),数据页(pages, 上百万记录行),扩展页(extends, 多个数据页),整个表,甚至整个数据库。有些数据库(如Oracle等)只使用精细的行锁机制,而别的数据库,则使用在页面,扩展页,表和数据库上的较大范围的锁机制。大多数数据库,包括SQL Server,同样支持行锁机制,但是经常使用的还是大范围锁机制。 这主要是因为管理锁需要付出高昂的代价。锁十分复杂而且数量很多,所以如果全都是 行锁的话,将是极为痛苦的:一百万行的数据更新就会轻易消耗巨大的内存,从而根本无法进行管理。 锁争用的描述 那些不仅仅使用行级锁的数据库使用一种称为混和锁(lock escalation)的技术来获取较高的性能。除非很明确知道是针对整个数据表,否则这些数据库的做法是开始使用行级锁, 然后随着修改的数据增多,开始使用大范围的锁机制。 不幸的是,这种混和锁的方法会产生和放大新的问题:死锁。如果两个用户以相反的顺序修改位于不同表的记录,而这两条记录虽然逻辑上不相关, 但是物理上是相邻的,操作就会先引发行锁,然后升级为页面锁。这样, 两个用户都需要对方锁定的东西,就造成了死锁。 例如: 用户A修改表A的一些记录,引发的页面锁不光锁定正在修改的记录,还会有很多其它记录也会被锁定。 用户B修改表B的一些记录,引发的页面锁锁定用户A和其它正在修改的数据。 用户A想修改用户B在表B中锁定(并不一定正在修改的)数据。 用户B想修改或者仅仅想访问用户A在表A中锁定(并不一定正在修改)的数据。 为了解决该问题,数据库会经常去检测是否有死锁存在,如果有,就把其中的一个事务撤销,好让另一个事务能顺利完成。一般来说,都是撤销 那个修改数据量少的事务,这样回滚的开销就比较少。使用行级锁的数据库 很少会有这个问题,因为两个用户同时修改同一条记录的可能性极小,而且由于极其偶然的修改数据的顺序而造成的锁也少。 而且,数据库使用锁超时来避免让用户等待时间过长。查询超时的引入也是为了同样目的。我们可以重新递交那些超时的查询,但是这只会造成数据库 的堵塞。如果经常发生超时,说明用户使用SQL Server的方式有问题。正常 情况是很少会发生超时的。 在服务器负载较高的运行环境下,使用混合锁的SQL Server锁机制,表现不会很好。 原因是锁争用(Lock Contention)。锁争用造成死锁和锁等待问题。在一个多用户系统中,很多用户会同时在修改数据库,还有更多的用户在同时访问数据库,随时会产生锁,用户 也争先恐后地获取锁以确保自己的操作的正确性,死锁频繁发生,这种情形下, 用户的心情可想而知。 确实,如果只有少量用户,SQL Server不会遇到多少麻烦。内部测试和发布的时候,由于用户较少, 也很难发现那些并发问题。但是当激发几百个并发,进行持续不断地INSERT,UPDATE,以及一些 DELETE操作时,如何观察是否有麻烦出现,那时候你就会不得不手忙脚乱地去阅读Oracle的文献。 不过我有一个解决办法,该方法只需要检查你的T-SQL代码,很少的调整和系统测试。用该方法教你进行适当的系统测试过程。 锁争用的解决方法 如果你在今年6月-8月之间访问Streamload.com,你可能会看到诸如“遇到死锁”,“锁超时”, “需要对象”等错误。这些错误都是由于锁争用引起的。在查阅大量文档和讨论后,我了解了这方面的知识,也就是上面所论述的内容,我再次叙述如下: SQL Server开始是用行级锁的,但是经常会扩大为页面锁和表锁,最终造成死锁。 即使用户没有修改数据,SQL Server在SELECT的时候也会遇到锁。幸运的是,我们可以通过SQL Server 的两个关键字来手工处理:NOLOCK和ROWLOCK。 它们的使用方法如下: SELECT COUNT(UserID)
    FROM Users WITH (NOLOCK)
    WHERE Username LIKE 'foobar' 和 UPDATE Users WITH (ROWLOCK)
    SET Username = 'fred' WHERE Username = 'foobar' NOLOCK的使用 NOLOCK可以忽略锁,直接从数据库读取数据。这意味着可以避开锁,从而提高性能和扩展性。但同时也意味着代码出错的可能性存在。你可能会读取到运行事务正在处理的无须验证的未递交数据。 这种风险可以量化。 如果是金融方面的代码或者一些非常规的总计(你想绝对保证安全性),你应该小心行事并且不使用这种技术。 但是我认为使用该技术会比你90%应用系统性能要好,当用户(或者是交互代码)发现一个未递交的修改时,使用技术会保证不会像未使用该技术那样引起大麻烦。实际上,你可能发现你的大多数数据很少或者甚至不进行 修改的,这样我们就不会因为这些数据被锁住而浪费大量的时间。 例如,如果你想统计在2000年6月份到8月份之间加入Streamload.com的所有用户,就没有理由去锁住任何记录: 2000年9月1号一到来,这个用户数就是确定的。又例如要列举在Streamload.com的文件列表:这种结果即使 不是100%的正确,也不是大问题。因为你要么不拥有该文件,当然也无所谓你是否能找到它,或者你确实拥有该文件,这种情况下你当然知道你是否修改了该文件,以及该文件是否已经上传完毕了。 但是,如果这些数据的修改,对数据库来说是基础性的修改,或者这些数据对于用户来说,必须是百分之百保证 是修改正确的(例如帐单或者余额数据),那么你不要使用该技术。 ROWLOCK的使用ROWLOCK告诉SQL Server只使用行级锁。ROWLOCK语法可以使用在SELECT,UPDATE和DELETE语句中,不过 我习惯仅仅在UPDATE和DELETE语句中使用。如果在UPDATE语句中有指定的主键,那么就总是会引发行级锁的。但是当SQL Server对几个这种UPDATE进行批处理时,某些数据正好在同一个页面(page),这种情况在当前情况下 是很有可能发生的,这就象在一个目录中,创建文件需要较长的时间,而同时你又在更新这些文件。当页面锁引发后,事情就开始变得糟糕了。而如果在UPDATE或者DELETE时,没有指定主键,数据库当然认为很多数据会收到影响,那样 就会直接引发页面锁,事情同样变得糟糕。 通过指定使用行级锁,这种情况可以得到避免。但是需要小心的是,如果你错误地使用在过多行上,数据库并不会聪明到自动将行级锁升级到页面锁,服务器也会因为行级锁的开销而消耗大量的内存和CPU,直至无法响应。尤其主要留意的是 企业管理器中"管理/当前活动"(Management/Current Activity)这一项。该项会花较长的时间来载入锁的信息。这些信息 时十分有用的,当你使用行级锁后,你如果在"锁/处理"(Locks/Processes)下看到几百个锁,一点都不奇怪,而恰恰应该庆幸锁超时和死锁的问题减少了。 注意事项我认为SQL Server倾向于使用NOLOCK关键字,而ROWLOCK关键字由用户根据情况自行决定。你可以仅仅在 SELECT语句中使用NOLOCK,这些SELECT语句场合包括INNER查询,以及在INSERT语句中的SELECT使用,在连接查询下也可以使用,例如: SELECT COUNT(Users.UserID)
    FROM Users WITH (NOLOCK)
    JOIN UsersInUserGroups WITH (NOLOCK) ON 
    Users.UserID = UsersInUserGroups.UserID NOLOCK 和 ROWLOCK的使用效果很难去量化在使用NOLOCK和ROWLOCK后,Streamload.com或者你的网站性能到底改善了多少。 不过在使用NOLOCK和ROWLOCK前,Streamload.com的速度很慢,而且经常无法使用,以及很不稳定。使用后,就变得快速、容易访问以及稳定了。两者简直就是天壤之别。这些改变当然无法在 关于锁的文档中很难找到。那些文档会建议你重写你的应用,当表数据被使用,锁产生了(没错,就是这样),然后你应该使用小事务并且以批处理的形式执行(不错,实际经验就是如此),使用低级别的隔离措施 (也没错,NOLOCK就是一个极端的例子),还建议你有限的连接,从而让处理器进行合作(好复杂的描述,而且总觉得怪怪的不像个好点子)。我不知道是否用数据库咨询师会提到本文中的技术(或类似的技术), 但是我只想说的是,Streamload.com的运行状况的确因为该技术得到了改善。如果你遇到了锁争用的问题,也可以试试NOLOCK和ROWLOCK。 申明是否使用NOLOCK和ROWLOCK,需要自行判断,并谨慎运用。我用该技术的方法是通过查看我的存储过程和即时查询语句,在我自己的理解上来觉得哪里用和如何用。我需要判断如果用NOLOCK 而引起一些返回的不准确,或者ROWLOCK是否会造成太多的锁,这些情况出现时,对于访问者或者使用者来说,是否是可以接受的。在大多数情况下,我认为是没有问题的,但是也许你的代码不适用, 你需要小心对待。你需要创建一些独立的过程,是否加锁,如何加锁,以作为对比。当UPDATE或者 DELETE查询影响到很多数据行时,你在使用PAGELOCK,TABLOCK时也会遇到别的问题。 
    附:--------------- UPDLOCK  读取表时使用更新锁,而不使用共享锁,并将锁一直保留到语句或事务的结束。UPDLOCK 的优点是允许您读取数据(不阻塞其它事务)并在以后更新数据,同时确保自从上次读取数据后数据没有被更改。  这是SqlServer2000中对更新锁的说明.  当我们用UPDLOCK来读取记录时可以对取到的记录加上更新锁,从而加上锁的记录在其它的线程中是不能更改的只能等本线程的事务结束后才能更改,我如下示例:BEGIN TRANSACTION --开始一个事务
    SELECT Qty
     FROM myTable WITH (UPDLOCK)
     WHERE Id in (1,2,3)
     UPDATE myTable SET Qty = Qty - A.Qty
     FROM myTable  AS A 
     INNER JOIN  @_Table AS B ON A.ID = B.ID
    COMMIT TRANSACTION --提交事务  这样在更新时其它的线程或事务在这些语句执行完成前是不能更改ID是1,2,3的记录的.其它的都可以修改和读,1,2,3的只能读,要是修改的话只能等这些语句完成后才能操作.从而保证的数据的修改正确.我帖上来我收藏,呵呵
      

  6.   

    如果此语句执行失败,此行记录不会被锁吧?
    还有此update语句各个条件什么的都正确,会有什么特殊原因导致执行失败?服务器什么的也都正常
      

  7.   

    没报错信息,在存储过程中。猜想着是此语句执行失败导致的,但又想不出会有什么原因导致update失败
      

  8.   

    你把WITH里面第一个锁去掉看看
      

  9.   

    这个语句试图在update语句加行级更新锁,实际上更新语句本身默认更新锁,所以语句可以改成
    update User
      with (rowlock)
        set f_money = f_money + 100
      where f_name = '张三'如果这个语句出错,那加锁就不会成功,所以对后面的操作没有影响
      

  10.   

    有没有在上下文开了事务?
    最好在开事务前执行语句
    SET XACT_ABORT ON
    这样出错后会自动回滚事务应该有报错信息的,检查你的前端程序是否屏蔽了错误信息。